|
Teaching Activity
|
|
|
2024 – |
Data Mining and Machine Learning, Lectures for B.Sc. Students in Mathematics, Major Block: Modelling, Department of Probability Theory and Statistics, Institute of Mathematics, Eötvös Loránd University (ELTE), Budapest, Hungary
|
|
|
2023 – |
Statistical Learning and Kernel Methods, Lectures for M.Sc. and Ph.D. Students in Applied and Pure Mathematics, Department of Probability Theory and Statistics, Institute of Mathematics, Eötvös Loránd University (ELTE), Budapest, Hungary
|
|
|
2022 – |
Mathematical Statistics, Lectures and Seminars for B.Sc. Students in Applied and Pure Mathematics, Department of Probability Theory and Statistics, Institute of Mathematics, Eötvös Loránd University (ELTE), Budapest, Hungary
|
|
|
2021 – |
Probability Theory II, Seminars for B.Sc. Students in Appl. Mathematics, Eötvös Loránd University (ELTE), Budapest, Hungary
|
|
|
2019 – |
Markov Decision Processes and Reinforcement Learning (MDPs & RL), Lectures for M.Sc. and Ph.D. Students in Mathematics, Institute of Mathematics, Budapest University of Technology and Economics (BME), Hungary; and (from 2022) Department of Probability Theory and Statistics, Institute of Mathematics, Eötvös Loránd University (ELTE), Budapest, Hungary [slides]
|
|
|
2019 – 2022 |
Mathematical Foundations of Machine Learning (MFML), Lectures for M.Sc. and Ph.D. Students in Applied Mathematics, Institute of Mathematics, Eötvös Loránd University (ELTE), Budapest, Hungary
[syllabus] [slides]
|
|
|
2015 – 2021 |
Stochastic Models and Adaptive Algorithms, Ph.D. School of Computer Science, Eötvös Loránd University (ELTE), Budapest, Hungary, and (since 2017) Budapest University of Technology and Economics (BME), Budapest, Hungary
[slides]
|
|
|
2013 – 2014 |
Mathematical Optimization (main organizer), SZTAKI: Institute for Computer Science and Control, Budapest, Hungary
|
|
|
2012 |
Probability and Random Models (ELEN90054, with Girish Nair), School of Engineering, University of Melbourne, Australia
|
|
|
2005 – 2006 |
Markov Decision Processes (organized by Cs. Szepesvári), SZTAKI: Institute for Computer Science and Control, Hungary
|
|
|
2002 |
Theory of Operating Systems, Department of Information Systems, Eötvös Loránd University (ELTE), Budapest, Hungary
|
|
|
2000 – 2002 |
Programming Methodology, Department of Software Technology, Eötvös Loránd University (ELTE), Budapest, Hungary
|
|
|
Lecture Slides
|
|
|
2023 |
The Huge Potential of AI in CAR-T Cell Therapies, Artificial Intelligence and Automation Expo, Budapest, Hungary [slides]
|
|
|
2021 |
Uncertainty Quantification and Kernels: Distribution-Free Inference for Regression and Classification; Deep Learning Seminar, Artificial Intelligence National Laboratory, Alfréd Rényi Institute of Mathematics, Budapest, Hungary [slides]
|
|
|
2021 |
Stochastic Optimization in Machine Learning: Inhomogeneity, Quantization and Acceleration; Data Analysis and Optimization Seminar, Budapest University of Technology and Economics (BME), Budapest, Hungary [slides]
|
|
|
2017 |
On the Reliability of Regression Models, Publication Award Seminar, SZTAKI, Budapest, Hungary [slides]
|
|
|
2012 |
Distribution-Free System Identification: Exact-, Non-Asymptotic Confidence Regions, Faculty of Electrical Engineering, Computer Science, and Mathematics, University of Paderborn, Germany [slides]
|
|
|
2010 |
Introduction to Markov Decision Processes, Department of Electrical Engineering, University of Melbourne, Australia [slides]
|
|
|
2009 |
A Machine Learning Approach to Stochastic Resource Control, Poster, DYSCO Study Day, Mons, Belgium [poster]
|
|
|
2008 |
Learning in Changing Environments: Reinforcement Learning in Environments with Asymptotically Bounded Variation, Gatsby Computational and Theoretical Neuroscience and Machine Learning Unit, University College London (UCL), UK
[slides]
|
|
|
2006 |
Introduction to Off-Policy Learning, MDP Seminar, SZTAKI, Budapest, Hungary [slides]
|
|
|
2005 |
Introduction to Temporal Difference Learning (Hungarian Slides), MDP Seminar, SZTAKI, Budapest, Hungary [slides]
|
|
|
2004 |
Intuitionism in Mathematics (Philosophy of Mathematics), HalSzem, ELTE, Budapest, Hungary [pdf] Handout [pdf]
|
|
|
|
Drafts and Preprints
|
|
|
– |
Szentpéteri Sz.; Csáji, B. Cs.: Finite Sample Analysis of Distribution-Free Confidence Ellipsoids for Linear Regression
[arxiv]
|
|
|
– |
Tamás, A.; Szentpéteri, Sz.; Csáji, B. Cs.: Data-Driven Upper Confidence Bounds with Near-Optimal Regret for Heavy-Tailed Bandits
[arxiv]
|
|
|
– |
Tamás, A.; Csáji, B. Cs.: Distribution-Free Inference for the Regression Function of Binary Classification
[arxiv]
|
|
|
– |
Carè, A.; Csáji, B. Cs.; Gerencsér, B.; Gerencsér, L.; Rásonyi, M.: Poisson Equations, Lipschitz Continuity and Controlled Queues [arxiv]
|
|
|
– |
Carè, A.; Weyer, E.; Csáji, B. Cs.; Campi, M.: Signed-Perturbed Sums Estimation of ARX Systems: Exact Coverage and Strong Consistency [arxiv]
|
|
|
– |
Csáji, B. Cs.; Györfi, L.; Tamás, A.; Walk, H.: On Rate-Optimal Partitioning Classification from Observable and from Privatised Data [arxiv]
|
|
|
Selected Journal Papers
|
|
|
– |
Tamás, A.; Csáji, B. Cs.: Recursive Estimation of Conditional Kernel Mean Embeddings,
Journal of Machine Learning Research (JMLR),
Microtome Publishing, Vol. 25, 2024 (accepted; to be published)
[arxiv]
|
|
|
– |
Szentpéteri Sz.; Csáji, B. Cs.: Sample Complexity of the Sign-Perturbed Sums Method,
Automatica, Elsevier, 2024 (accepted; in print)
[arxiv]
|
|
|
– |
Szentpéteri Sz.; Csáji, B. Cs.: Finite-Sample Identification of Linear Regression Models with Residual-Permuted Sums, IEEE Control Systems Letters (L-CSS), IEEE Press, Vol. 8, 2024, pp. 1523–1528 [arxiv]
|
|
|
– |
Tamás, A.; Bálint, D. Á.; Csáji, B. Cs.: Robust Independence Tests with Finite Sample Guarantees for Synchronous Stochastic Linear Systems, IEEE Control Systems Letters (L-CSS), IEEE Press, Vol. 7, 2023, pp. 2701–2706 [arxiv]
|
|
|
– |
Szentpéteri Sz.; Csáji, B. Cs.: Non-Asymptotic State-Space Identification of Closed-Loop Stochastic Linear Systems using Instrumental Variables, Systems & Control Letters, Elsevier, Vol. 178, August 2023, 105565 [arxiv]
[link]
|
|
|
– |
Csáji, B. Cs.; Horváth, B.: Nonparametric, Nonasymptotic Confidence Bands with Paley-Wiener Kernels for Band-Limited Functions, IEEE Control Systems Letters (L-CSS), IEEE Press, Vol. 6, 2022, pp. 3355–3360 [arxiv]
|
|
|
– |
Tamás, A.; Csáji, B. Cs.: Exact Distribution-Free Hypothesis Tests for the Regression Function of Binary Classification via Conditional Kernel Mean Embeddings, IEEE Control Systems Letters (L-CSS), IEEE Press, Vol. 6, 2022, pp. 860–865 [arxiv]
|
|
|
– |
Carè, A.; Campi, M. C.; Csáji, B. Cs.; Weyer, E.: Facing Undermodelling in Sign-Perturbed Sums System Identification, Systems & Control Letters, Elsevier, Vol. 153, July 2021, 104936 [pdf]
|
|
|
– |
Monostori, L.; Csáji, B. Cs.; Egri, P.; Kis, K. B.; Váncza, J.; Ochs, J.; Jung, S.; König, N.; Pieske, S.; Wein, S.; Schmitt, R.; Brecher, C.: Automated Stem Cell Production by Bio-Inspired Control, CIRP Journal of Manufacturing Science and Technology, Elsevier, Vol. 33, 2021, 369–379 [pdf]
|
|
|
– |
Csáji, B. Cs.; Kis, K. B.: Distribution-Free Uncertainty Quantification for Kernel Methods by Gradient Perturbations, Machine Learning, Springer, Special Issue of the European Conference on Machine Learning (ECML PKDD Journal Track), Vol. 108, 2019, pp. 1677–1699
[arxiv]
[link]
|
|
|
– |
Weyer, E.; Campi, M. C.; Csáji, B. Cs.: Asymptotic Properties of SPS Confidence Regions, Automatica, Elsevier, Vol. 82, 2017, pp. 287–294
[pdf]
|
|
|
– |
Csáji, B. Cs.; Kemény, Zs.; Pedone, G.; Kuti, A.; Váncza, J.: Wireless Multi-Sensor Networks for Smart Cities: A Prototype System with Statistical Data Analysis, IEEE Sensors Journal, IEEE Press, Vol. 17, Issue 23, 2017, pp. 7667–7676 [arxiv]
|
|
|
– |
Carè, A.; Csáji, B. Cs.; Campi, M. C.; Weyer, E.: Finite-Sample System Identification: An Overview and a New Correlation Method, IEEE Control Systems Letters (L-CSS), IEEE Press, Vol. 2, No. 1, 2017, pp. 61–66 [pdf]
|
|
|
– |
Kovács, A.; Bátai, R.; Csáji, B. Cs.; Dudás, P.; Háy, B.; Pedone, G.; Révész, T.; Váncza, J.: Intelligent Control for Energy-Positive Street Lighting, Energy: The International Journal,
Elsevier, Vol. 114, 2016, pp. 40–51 [pdf]
|
|
|
– |
Csáji, B. Cs.; Campi, M. C.; Weyer, E.: Sign-Perturbed Sums: A New System Identification Approach for Constructing Exact Non-Asymptotic Confidence Regions in Linear Regression Models, IEEE Transactions on Signal Processing, IEEE Press, Vol. 69, 2015, pp. 169–181 [pdf]
|
|
|
– |
Monostori, L.; Valckenaers, P.; Dolgui, A.; Panetto, H.; Brdys, M.; Csáji, B. Cs.: Cooperative Control in Production and Logistics, Annual Reviews in Control (ARC): A Journal of IFAC, the International Federation of Automatic Control, Elsevier, Vol. 39, 2015, pp. 12–29 [pdf]
|
|
|
– |
Csáji, B. Cs.; Jungers, R. M.; Blondel, V. D.: PageRank Optimization by Edge Selection, Discrete Applied Mathematics (DAM): The Journal of Combinatorial Algorithms, Informatics and Computational Sciences, Elsevier, Vol. 169, 2014, pp. 73–87 [pdf]
|
|
|
– |
Csáji, B. Cs.; Browet, A.; Traag, V. A.; Delvenne, J-C.; Huens, E.; Van Dooren, P.; Smoreda, Z.; Blondel, V. D.: Exploring the Mobility of Mobile Phone Users, Physica A: Statistical Mechanics and its Applications, Elsevier, Vol. 392, Issue 6, 2013, pp. 1459–1473 [pdf]
|
|
|
– |
Csáji, B. Cs.; Monostori, L.: Adaptive Stochastic Resource Control: A Machine Learning Approach, Journal of Artificial Intelligence Research (JAIR), AAAI Press, Vol. 32, 2008, pp. 453–486 [pdf]
|
|
|
– |
Csáji, B. Cs.; Monostori, L.: Value Function Based Reinforcement Learning in Changing Markovian Environments, Journal of Machine Learning Research (JMLR), MIT Press and Microtome Publishing, Vol. 9, 2008, pp. 1679–1709 [pdf]
|
|
|
Selected Conference Papers
|
|
|
– |
Tamás, A.; Szentpéteri, Sz.; Csáji, B. Cs.: Data-Driven Confidence Intervals with Optimal Rates
for the Mean of Heavy-Tailed Distributions, 27th International Conference on Artificial Intelligence and Statistics (AISTATS), Valencia, Spain, May 2–4, 2024, PMLR: Vol. 238 [pdf] [poster]
|
|
|
– |
Szentpéteri, Sz.; Kis, K. B; Egri, P.; Sanges, C.; Danhof, S.; Mestermann, K.; Hudecek, M.; Navarro Velázquez, S.; Juan, M.; Csáji, B. Cs.: Reinforcement Learning Based Resource Management for CAR T-Cell Therapies, 6th CIRP Conference on Biomanufacturing (BioM), Dresden, Germany, June 11–13, Procedia CIRP, Elsevier, 2024 [pdf]
|
|
|
– |
Horváth, B.; Csáji, B. Cs.: Nonparametric Simultaneous Confidence Bands: The Case of Known Input Distributions, 23rd European Young Statisticians Meeting (EYSM 2023, virtual mode), Ljubljana, Slovenia,
September 11–15, 2023 [pdf]
|
|
|
– |
Szentpéteri, Sz.; Csáji, B. Cs.: Sample Complexity of the Sign-Perturbed Sums Identification Method: Scalar Case, 22nd IFAC World Congress (World Congress of the International Federation of Automatic Control), Yokohama, Japan, July 9–14, 2023 [pdf]
|
|
|
– |
Csáji, B. Cs.; Horváth, B.: Improving Kernel-Based Nonasymptotic Simultaneous Confidence Bands, 22nd IFAC World Congress (World Congress of the International Federation of Automatic Control), Yokohama, Japan, July 9–14, 2023 [pdf]
|
|
|
– |
Kis, K. B.; Csempesz, J.; Csáji, B. Cs.: A Simultaneous Localization and Mapping Algorithm for Sensors with Low Sampling Rate and its Application to Autonomous Mobile Robots, 10th CIRP Conference on Digital Enterprise Technologies, 2021, pp. 154–159 [pdf]
|
|
|
– |
Csáji, B. Cs.; Kis, K. B.; Kovács, A.: A Sampling-and-Discarding Approach to Stochastic Model Predictive Control for Renewable Energy Systems, 21st IFAC World Congress (1st Virtual IFAC World Congress), July 11–17, 2020, pp. 7142–7147 [pdf] [slides]
|
|
|
– |
Csáji, B. Cs.; Tamás, A.: Semi-Parametric Uncertainty Bounds for Binary Classification, 58th IEEE Conference on Decision and Control (CDC), Nice, France, December 11–13, 2019, pp. 4427–4432 [pdf] [slides]
|
|
|
– |
Carè, A.; Csáji, B. Cs.; Gerencsér, B.; Gerencsér, L.; Rásonyi, M.: Parameter-Dependent Poisson Equations: Tools for Stochastic Approximation in a Markovian Framework, 58th IEEE Conference on Decision and Control (CDC), Nice, France, December 11–13, 2019, pp. 2259–2264 [pdf]
|
|
|
– |
Csáji, B. Cs.; Kis, K. B.: Distribution-Free Uncertainty Quantification for Kernel Methods by Gradient Perturbations, 58th European Conference on Machine Learning (ECML PKDD), Würzburg, Germany, September 16–20, 2019 [arxiv] [slides] [poster]
|
|
|
– |
Gerencsér, L.; Csáji, B. Cs.; Sabanis, S.: Asymptotic Analysis of the LMS Algorithm with Momentum, 57th IEEE Conference on Decision and Control (CDC), Miami Beach, Florida, December 17–19, 2018, pp. 3062–3067 [pdf] [slides]
|
|
|
– |
Csáji, B. Cs.: Non-Asymptotic Confidence Regions for Regularized Linear Regression Estimates, 20th European Conference on Mathematics for Industry (ECMI), Finite-Sample System Identification Minisymposium, Budapest, Hungary, June 18–22, 2018, Springer, pp. 605–611
[pdf]
|
|
|
– |
Kolumbán, S.; Csáji, B. Cs.: Towards D-Optimal Input Design for Finite-Sample System Identification, 18th IFAC Symposium on System Identification (SYSID), Stockholm, Sweden, July 9–11, 2018, pp. 215–220
[pdf]
|
|
|
– |
Carè, A.; Csáji, B. Cs.; Campi, M. C.; Weyer, E.: Undermodelling Detection with Sign-Perturbed Sums, 20th IFAC World Congress, Toulouse, France, July 9–14, 2017, pp. 2799–2804 [pdf] [slides]
|
|
|
– |
Carè, A.; Csáji, B. Cs.; Campi, M. C.: Sign-Perturbed Sums (SPS) with Asymmetric Noise: Robustness Analysis and Robustification Techniques, 55th IEEE Conference on Decision and Control (CDC), Las Vegas, Nevada, December 12–14, 2016, pp. 262–267 [pdf]
|
|
|
– |
Csáji, B. Cs.: Score Permutation Based Finite Sample Inference for Generalized AutoRegressive Conditional Heteroskedasticity (GARCH) Models, 19th International Conference on Artificial Intelligence and Statistics (AISTATS), Cadiz, Spain, May 9–11, 2016, pp. 296–304 [pdf] [poster]
|
|
|
– |
Volpe, V.; Csáji, B. Cs.; Carè, A.; Weyer, E.; Campi, M. C.: Sign-Perturbed Sums (SPS) with Instrumental Variables for the Identification of ARX Systems, 54th IEEE Conference on Decision and Control (CDC), Osaka, Japan, December 15–18, 2015, pp. 2115–2120 [arxiv]
|
|
|
– |
Csáji, B. Cs.; Weyer, E.: Closed-Loop Applicability of the Sign-Perturbed Sums Method, 54th IEEE Conference on Decision and Control (CDC), Osaka, Japan, December 15–18, 2015, pp. 1441–1446 [pdf] [slides]
|
|
|
– |
Csáji, B. Cs.; Kovács, A.; Váncza, J.: Adaptive Aggregated Predictions for Renewable Energy Systems, 2014 IEEE SSCI Symposium on Adaptive Dynamic Programming and Reinforcement Learning (ADPRL), Orlando, Florida, December 9–12, 2014, pp. 132–139 [pdf]
|
|
|
– |
Csáji, B. Cs.; Campi, M. C.; Weyer, E.: Strong Consistency of the Sign-Perturbed Sums Method, 53rd IEEE Conference on Decision and Control (CDC), Los Angeles, California, December 15–17, 2014, pp. 3352–3357
[pdf]
|
|
|
– |
Weyer, E.; Csáji, B. Cs.; Campi, M. C.: Guaranteed Non-Asymptotic Confidence Ellipsoids for FIR Systems, 52nd IEEE Conference on Decision and Control (CDC), Florence, Italy, December 10–13, 2013, pp. 7162–7167
[pdf]
|
|
|
– |
Csáji, B. Cs.; Campi, M. C.; Weyer, E.: Sign-Perturbed Sums (SPS): A Method for Constructing Exact Finite-Sample Confidence Regions for General Linear Systems, 51st IEEE Conference on Decision and Control (CDC), Maui, Hawaii, December 10–13, 2012, pp. 7321–7326 [pdf]
|
|
|
– |
Campi, M. C.; Csáji, B. Cs.; Garatti, S.; Weyer, E.: Certified System Identification: Towards Distribution-Free Results, 16th IFAC Symposium on System Identification (SYSID), Brussels, Belgium, July 11–13, 2012, pp. 245–255 [pdf]
|
|
|
– |
Csáji, B. Cs.; Campi, M. C.; Weyer, E.: Non-Asymptotic Confidence Regions for the Least-Squares Estimate, 16th IFAC Symposium on System Identification (SYSID), Brussels, Belgium, July 11–13, 2012, pp. 227–232 [pdf]
|
|
|
– |
Csáji, B. Cs.; Weyer, E.: Recursive Estimation of ARX Systems Using Binary Sensors with Adjustable Thresholds, 16th IFAC Symposium on System Identification (SYSID), Brussels, Belgium, July 11–13, 2012, pp. 1185–1190 [pdf] [slides]
|
|
|
– |
Csáji, B. Cs.; Weyer, E.: System Identification with Binary Observations by Stochastic Approximation and Active Learning, 50th IEEE Conference on Decision and Control (CDC) & European Control Conference (ECC), Orlando, Florida, December 12–15, 2011, pp. 3634–3639 [pdf]
|
|
|
– |
Ivanov, T.; Csáji, B. Cs.: Reproducing Kernels Preserving Algebraic Structure: A Duality Approach, 19th International Symposium on Mathematical Theory of Networks and Systems (MTMS), Budapest, Hungary, July 5–9, 2010, pp. 1161–1167 [pdf]
|
|
|
– |
Csáji, B. Cs.; Jungers, R. M.; Blondel, V. D.: PageRank Optimization in Polynomial Time by Stochastic Shortest Path Reformulation, 21st International Conference on Algorithmic Learning Theory (ALT), Canberra, Australia, October 6–8, 2010, pp. 89–103 [pdf]
|
|
|
– |
Csáji, B. Cs.; Monostori, L.: Adaptive Sampling Based Large-Scale Stochastic Resource Control, 21st National Conference on Artificial Intelligence (AAAI), Boston, Massachusetts, July 16–20, 2006, pp. 815–820
[pdf]
|
|
|
Selected Papers in Hungarian
|
|
|
– |
Tamás, A.; Csáji, B. Cs.: Statisztikus tanluláselmélet I: Szupport vektor gépek (Statistical Learning Theory I: Support Vector Machines), Érintő: Elektronikus Matematikai Lapok (Tangent: Electronic Journal of Mathematics, János Bolyai Mathematical Society), Vol. 31, március, 2024 [link]
|
|
|
– |
Csáji, B. Cs.: Antirealizmus a matematikában (Anti-Realism in Mathematics), Érintő: Elektronikus Matematikai Lapok (Tangent: Electronic Journal of Mathematics, János Bolyai Mathematical Society), Vol. 22, December, 2021 [link]
|
|
|
– |
Tamás, A.; Csáji, B. Cs.: Sztochasztikus garanciák bináris klasszifikációhoz (Stochastic Guarantees for Binary Classification), Alkalmazott Matematikai Lapok (Applied Mathematical Journal of the Section of Mathematics, Hungarian Academy of Sciences), Vol. 37, No. 2, 2020 [pdf]
|
|
|
– |
Csáji, B. Cs.: Szimmetria és konfidencia (Symmetry and Confidence), Alkalmazott Matematikai Lapok (Applied Mathematical Journal of the Section of Mathematics, Hungarian Academy of Sciences), Vol. 36, No. 2, 2019, pp. 271–278 [pdf]
|
|
|
– |
Csáji, B. Cs.; Rédei, M.: A racionális demokratikus véleményösszegzés korlátairól (On the Limits of Rational Democratic Judgment Aggregation), Magyar Filozófiai Szemle (Hungarian Philosophical Review), Vol. 55, No. 2, 2011, pp. 97–121
[pdf]
|
|
|