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Abstract 

This paper focuses on optimizing resource management strategies in chimeric antigen receptor (CAR) T-cell therapies using reinforcement 

learning (RL). CAR T-cell therapy is an innovative and promising treatment within the field of immunotherapy, which is based on the isolation 

of patients’ own T-cells, genetically modifying these cells to express a CAR for tumor recognition, cultivating and expanding these T cells and 

infusing them back to the patient. These therapies require several reusable but scarce resources, including special equipment, such as the bioreactor 

that is used to expand CAR T cells, and medical resources, such as the hospital staff, e.g., doctors and nurses. Considering the stochastic nature 

of medical procedures and the production of CAR T cells, the scheduling of the therapies and the efficient allocation of the required resources 

pose a significant challenge inside the hospital environment. Here, we propose a derivative-free policy gradient algorithm that utilizes a simulation 

model of the therapy, built using real-world data, to obtain efficient control policies for the resource management problem. The proposed method 

is designed to minimize the expected number of deviations from the therapy protocol as well as the expected overall completion time of the 

therapies for every patient. The effectiveness of the proposed resource management approach is demonstrated via simulation experiments. 
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1. Introduction 

Chimeric antigen receptor (CAR) T-cell therapy is a 

revolutionary novel treatment in hematology [1] and oncology 

[2]. In this type of cell therapy, immune cells (T lymphocytes) 

are engineered to express a synthetic chimeric antigen receptor 

(CAR) and are redirected to seek and destroy cancerous cells 

in the patient’s body. These receptors are artificial molecules 

that do not exist in nature, they are a mixture of the variable 

domain of heavy and light chains of an antibody, which 

represents the external domain of the CAR, and the zeta chain 

of CD3 molecule, which represents the internal domain of the 

CAR [1]. CAR T-cell therapy is indeed a transformative new 

treatment in hematology with clinical proof-of-concept in 

patients with acute leukemia [3] lymphoma (lymph node 

cancer) [4] and multiple myeloma (bone marrow cancer) [5]. A 

conceptual appeal of this treatment is that the patient’s own 

immune cells (T cells) are genetically engineered – providing 

a personalized treatment – and that a single infusion of CAR T 

cells can be sufficient to eliminate the cancerous cells and to 

establish an immunological memory that protects the patient 

from tumor relapse (i.e., “living drug paradigm”) [6]. 

An illustration of the CAR T-cell therapy is presented in Fig. 

1. As the figure shows, in the first step, blood is collected from 

http://www.sciencedirect.com/science/journal/22128271
https://nam11.safelinks.protection.outlook.com/?url=https%3A%2F%2Fcreativecommons.org%2Flicenses%2Fby-nc-nd%2F4.0&data=05%7C01%7Cs.chandrasekar%40elsevier.com%7Cf5cea6e838d14cbb7e0c08db7c5996ab%7C9274ee3f94254109a27f9fb15c10675d%7C0%7C0%7C638240497737044369%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C3000%7C%7C%7C&sdata=%2BPoJH9IDUgvbC0DK0iGkxwXO672OmOlAdGDtFgTntPo%3D&reserved=0
https://nam11.safelinks.protection.outlook.com/?url=https%3A%2F%2Fcreativecommons.org%2Flicenses%2Fby-nc-nd%2F4.0&data=05%7C01%7Cs.chandrasekar%40elsevier.com%7Cf5cea6e838d14cbb7e0c08db7c5996ab%7C9274ee3f94254109a27f9fb15c10675d%7C0%7C0%7C638240497737044369%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C3000%7C%7C%7C&sdata=%2BPoJH9IDUgvbC0DK0iGkxwXO672OmOlAdGDtFgTntPo%3D&reserved=0
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the patient and subsequently, T cells are isolated. Then, these 

T cells are genetically modified to express a non-canonical 

molecule on their surface, called CARs, which can specifically 

recognize their respective antigen on the surface of cancer cells. 

In the next step, millions of these CAR T cells are grown by 

expanding the cells in a bioreactor. Finally, these CAR T cells 

are infused back to the patient to eliminate the cancerous cells. 

CAR T-cell therapy in acute leukemia and lymphoma is now 

an approved treatment that is highly demanded by patients and 

caregivers [7]. The success of CAR T-cell therapy as a role 

model for gene-engineered cellular immunotherapy in 

hematology and oncology has spurred the development of this 

treatment for novel applications in infectious diseases [8], 

chronic and autoimmune diseases [9]. 

 

 

Fig. 1. CAR T-cell therapy (source: National Cancer Institute) 

Conventional CAR T-cell therapy is complicated by 

complex logistics and supply from centralized production 

facilities, inflexible manufacturing and clinical use schemes 

that disregard patient and cell product characteristics, thereby 

limiting patient access and therapeutic outcome. These also 

make the therapy very expensive. The aim of the EU funded 

AIDPATH project is to establish personalized treatments 

directly at the clinical sites, and to accomplish end-to-end 

automation of hospital-based CAR T-cell manufacture. One of 

the challenges in developing such a system is to optimize 

scheduling and resource planning to reduce costs, to increase 

hospital resource utilization and to augment patient access.  

From the perspective of resource management and patient 

scheduling, the hospital environment is a complex system with 

high uncertainty. Currently, this task is typically done 

manually, which means that the decisions regarding resource 

allocation and optimization are made based on human 

judgment and experience rather than automated processes. In 

this paper a machine learning (ML) approach is suggested, in 

order to solve scheduling problems in highly complex and 

stochastic environments. A branch of ML algorithms that can 

be effectively applied in these scenarios is reinforcement 

learning (RL). RL deals with the problem of learning a control 

policy (decision strategy) for sequential decision making by 

interacting with an uncertain and dynamic environment.  

Standard resource allocation problems, where various RL 

algorithms were investigated is the Job Shop Scheduling (JSP) 

problem and the Resource Constrained Scheduling Problem 

(RCSP). The most popular value-iteration type model-free RL 

algorithm is Q-learning. Several variants of this algorithm were 

studied to solve resource allocation problems, such as JSP. One 

of the earliest solutions to the problem can be found in [10]. 

Kernel methods and clustering were applied to improve fitted 

Q-learning based resource allocation in [11]. A deep learning 

based approach, called Deep-Q-Networks (DQN), were studied 

for the JSP in [12][13]. Policy gradient type methods for 

solving JSP were also investigated: in [14] the authors 

proposed a multi-agent policy gradient method and in [15] a 

policy-iteration type actor-critic algorithm was presented. 

A more healthcare oriented application of RL based 

resource allocation was presented in [16], where the hospital 

resource management problem was treated as a business 

process and a Q-learning based solution was used. This method 

was then applied to address the problem of optimizing resource 

allocation in a radiology CT-scan examination process. A 

simulation-based approximate dynamic programming (ADP) 

approach was suggested in [17], which considered both 

stochastic service times and uncertain future arrival of clients. 

In that work experimental investigations were concluded using 

data from the radiology department of a hospital. A deep RL 

based solution to patient scheduling in emergency departments 

was investigated in [18], where the scheduling problem was 

formulated as a Markov decision process and a DQN was 

designed to determine an optimal scheduling policy. In [19], an 

advantage actor-critic algorithm was applied to schedule 

appointments in various challenging hospital environments. 

Experimental comparisons with heuristics are also shown. 

Here, we introduce an SPSA (Simultaneous Perturbation 

Stochastic Approximation) [21] based policy gradient type RL 

method for the resource management of CAR T-cell therapies. 

Policy gradient methods are preferred in continuous state 

spaces over value function based methods, and building on an 

efficiently parametrized policy makes the need of black-box 

type function approximators, such as deep neural networks, 

superfluous. Furthermore, since we do not necessarily have 

access to the derivatives of the control policy, REINFORCE 

type methods are infeasible, therefore, we work with direct 

estimates of the gradient provided by the SPSA method in a 

dimension-independent way. 

The main contributions of the paper are as follows: 

1. A flexible simulation model of the CAR T-cell therapy 

is presented. It allows the parallel execution of several 

simulation instances, to speed up the learning process. 

2. A closed-loop RL-based resource management and 

scheduling strategy is proposed whose parameters are 

optimized by an SPSA-based policy gradient method. 

3. The effectiveness of the resource management system 

is demonstrated via numerical experiments. 
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2. The AIDPATH project 

In this section we describe the overall infrastructure of the 

AIDPATH project and the automated CAR T-cell platform. 

The concept of AIDPATH, which is an EU funded H2020 

project, consists of a manufacturing infrastructure installed at 

the clinical environment for the automated, data-driven CAR 

T-cell production, considering all physical assets, for example 

patients, materials, devices and specialized staff, furthermore 

the existing IT and logistic systems in the hospital.  

On the physical level, the automated CAR T-cell production 

consists of heterogeneous machines and devices, which are 

connected via a standardized interface in the COPE integration 

framework, see Fig. 2. In this framework, all devices are 

controlled through a service-oriented software, which allows 

centralized management and supervision of the manufacturing 

processes. The control software is supported by a digital twin 

(AI1) that defines the initial process parameters and an ML-

based process control algorithm (AI2) that adaptively adjusts 

these parameters during the operation. 

The manufacturing and the resource planning systems 

optimize the logistic processes with AI-based solutions 

assuring an unobstructed, efficient production process. The 

production scheduling (AI3) module is closely linked to the 

control software and aims at generating production schedules 

for the manufacturing platform based on durations and 

characteristics of the biological processes. The resource 

management (AI4) module focuses on the personalized CAR 

T-cell therapies themselves, optimizing the usage of equipment 

and staff and aligns them with the production schedule. 

The AIDPATH infrastructure also consist of a decision 

support system (AI5), which provides a model for 

personalizing the CAR T-cell product and treatment, based on 

a historical dataset, which includes information about the 

previous patients, their reaction to the infusion and their 

recovery during the follow-up period. 

The LogiqCare Platform provides a secure and reliable 

cloud-based data management system in the AIDPATH 

project. LogiqCare stores and processes historical data for the 

training of ML algorithms, as well as establishes a data pipeline 

for the AI-based applications. It also lays the foundation of the 

data exchange between different hospitals in the future. 

 

Fig. 2. AIDPATH platform 

3. Problem setting 

3.1. The CAR T-cell therapy protocol 

In this section, we outline a treatment protocol of CAR T-

cell therapies. In addition to the six FDA-approved products, a 

variety of novel CAR T-cell products are being developed and 

clinical protocols are still under development. Hence, treatment 

schedules can vary between centers, products and protocols. 

Here, we overview the current version of the CARAMBA 

protocol which is used in the Würzburg University Clinic. 

The therapy consists of several medical procedures, Table 1 

presents the main steps of the therapy along with the required 

resources and optimal time frame for each step. The equipment 

and staff required for each step can be divided into two groups: 

resources that are only used for the CAR T-cell therapies, and 

resources that are used by other departments in the hospital, as 

well. Shared resources include the ECG, MRT, PET imaging 

and the Apheresis units. In Table 1 the “specialist” and the 

“study nurse” abbreviate a physician and a nurse specialized in 

immunotherapies, working full-time on these therapies. 

Table 1 Therapy overview 

Therapy step Equipment and staff Time frame 

Screening/Eligibility 

assessment 

Specialist 

Doctor in Training 

Study Nurse 

ECG 

MRT 

Day -31 to day -29 

Eligibility check for 

Leukapheresis 

Specialist 

Study Nurse 

Day -29 to day -26 

Leukapheresis Apheresis Day -26 

CAR T Production Production Day -26 to Day -12 

Quality Control - Day -12 to Day -5 

Baseline assessment Specialist 

Doctor in Training 

Study Nurse 

MRT 

Routine Nurse 

PET Imaging 

Day -8 to Day -5 

Lymphodepleting 

Chemotherapy assessment 

Specialist Day -5 

Lymphodepleting 

Chemotherapy 

preparation 

Study Nurse Day -5 

Lymphodepleting 

chemotherapy 

Specialist 

Study Nurse 

Day -5 to Day -2 

Break Specialist 

Routine Nurse 

Day -2 to Day 0 

Pre-infusion assessment Specialist 

Study Nurse 

ECG 

Day 0 

CAR T product infusion Specialist 

Study Nurse 

Study Nurse 

Day 0 

Post-infusion assessment Specialist 

Study Nurse 

ECG 

Routine Nurse 

Day 0 

Follow-up Specialist 

Routine Nurse 

Day 1 to Day 28 
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3.2. Resource management for CAR T-cell therapies 

A resource allocation problem typically includes scarce, 

reusable resources and non-preemptive, time-dependent, 

interconnected tasks (e.g., with precedence constraints) and 

seeks to find an allocation of these resources to tasks, such that 

a given objective is optimized subject to the constraints. Such 

problems typically have the following components: 

• a set of available resource types with their amounts; 

• a set of tasks to be completed, each using a specified 

number of resources from each resource type; 

• a set describing the interconnections of the tasks; 

• and an objective function (for example, a set of costs 

or returns for each task and resource). 

In the context of resource management for personalized 

CAR T-cell therapies, tasks are the procedures that a patient 

has to undergo and the resources are the key staff and medical 

equipment, detailed in Table 1. The interconnection of the tasks 

is given by the order of the procedures. Finally, the aims of the 

resource management process are as follows: 

1. To minimize the number of protocol deviations during 

the CAR T-cell therapies because of unavailable 

shared and non-shared resources at the hospital. 

2. To reduce the completion time of the treatment of the 

last scheduled patient (closely related to maximizing 

the efficient utilization of the available resources). 

A “protocol deviation” is a change, divergence, or departure 

from the study design or procedures defined in the protocol, 

e.g., a treatment is not done in its prescribed time window. 

4. Reinforcement learning based resource management 

In this section we present our reinforcement learning (RL) 

based resource management solution, which is a simulation-

based optimization method. Our solution consists of two main 

parts: (1) a simulation model of the therapy, which works with 

stochastic task durations and even allows executing several 

simulations simultaneously, and (2) an SPSA-based policy 

gradient type RL algorithm that optimizes the scheduling of the 

patients via a priority matrix and therapy start times, exploiting 

the flexible simulation model. An overview of the two 

components integrated in the infrastructure of the AIDPATH 

project is shown in Fig. 3, where P1-P3 denotes the patients. 

 

 

Fig. 3. Integration of the resource management module in AIDPATH 

4.1. Simulation model of the therapy 

The simulation is modelling the CAR T-cell therapy based 

on the clinical protocol, detailed in Table 1, and generates a 

schedule based on patient-procedure priorities and patient 

start dates. The simulation model has other uses, as well, such 

as generating test data and visualizing the therapy process. The 

model also includes a data interface, which serves as an API 

(application programming interface) for the machine learning 

algorithm, furthermore, it can be configured through the data 

interface, so that different medical procedures, resource 

quantities and uncertainty settings could be analyzed. 

Configurable reservations for the resources and eight-hour 

work shifts are also included in the simulation model. With the 

configurable reservations, e.g., the unavailability of the shared 

resources used by other departments can be simulated. 

In our resource management concept, the order in which the 

therapy procedures are executed is controlled by priorities. 

There are two parameters influencing the priorities: the patients 

and the procedures. This enables to express cases, when some 

patients are considered to be more urgent due to their health 

status, or when some procedures are more important to be 

executed. Although, this priority-based representation provides 

a flexible framework in a technical sense, any decision 

regarding the actual urgency of individual patients or 

procedures are made outside the resource management module, 

by the physicians supervising the treatment. 

Unlike standard priority-based approaches which only 

consider patients waiting for the procedures, and choosing the 

patient-procedure pair with the highest priority, our simulation 

model also operates with partial prediction, i.e., not only 

waiting patients are considered, but also patients with an 

ongoing procedure and patients waiting for the allotted day of 

the next step. In this way, even if a procedure could be started 

for a patient, it will not be started if that would cause delay for 

a patient-procedure pair with a higher priority in the future. 

This prediction only considers the next procedures and assumes 

the average (i.e., expected value of) procedure times, since the 

realized times are stochastic. The execution of the simulation 

is further influenced by the therapy start days. This means that 

not every therapy starts at the beginning of the simulation, but 

it can be specified, on which day a patient’s therapy is started. 

The simulation applies the AnyLogic toolkit which provides 

three different paradigms that can be used independently or 

combined: discrete event, agent based and system dynamics. 

The CAR T-cell therapy simulation primarily applies the 

discrete event paradigm, where the therapy is described by the 

process modelling library. The procedures of the therapy are 

represented by services that require one or more resources from 

the defined resource pools. Since the priority-based control is 

quite complex with partial prediction included, the standard 

priority queues are not used. The agents are waiting in wait 

blocks and the custom priority-based control is implemented 

uniquely. The resources and the patients are represented as 

agents, but there is neither any decision inside the agents nor 

communication between them. A simulation server is also 

applied which can run several simulations in parallel. This can 

be utilized to accelerate the proposed learning process. 
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4.2. SPSA-based policy gradient for scheduling 

In order to solve the therapy scheduling problem, we have 

developed a policy gradient-based solution. Policy gradient 

methods [20] are a branch of RL algorithms that directly 

optimize a parametrized control policy, by using gradient 

descent type recursive optimization techniques. Unlike 

standard RL solutions, in our proposed method, the input of the 

environment (hospital simulation) is not the actions (selecting 

a patient for a given resource), but the parametrized policy, and 

the simulation does the action selection based on this control 

policy. The output of the simulation is the therapy schedule that 

is generated for the given policy. Consequently, it is an offline 

RL solution, since the algorithm does not update the policy 

after every state transition of the simulation, but only after the 

simulations are finished, and the total cost is revealed. An 

illustration of the RL agent - hospital simulation interaction is 

illustrated in Fig. 4. In every optimization iteration the agent 

updates the control policy parameters θk based on the calculated 

costs Ck for the given schedule Sk generated by the simulation. 

 

 

Fig. 4. RL agent-simulation interaction 

In our offline RL solution, we use an SPSA-based policy 

optimization method. This algorithm estimates the gradient by 

computing finite differences from the observed (cumulative) 

costs. An advantage of the SPSA method is that it only needs 

two observations to get a gradient estimate, independently of 

the number of parameters (i.e., the dimension of the problem).  

We further enhance the estimate by using mini-batches. The 

pseudocode of our proposed method is shown in Fig. 5.  

At the beginning of the optimization process an initial policy 

is generated. Then, in each iteration, the actual control policy 

is perturbed and pairs of alternative policies are generated. 

With these perturbed resource control policies, the simulation 

environment is evaluated. From the schedules Sk, returned by 

the simulations (i.e., in a mini-batch), a cost is computed, which 

is determined by the optimization objectives detailed in Section 

3.2. Using these costs, gradient estimates of the objective 

function in θk, are calculated. Finally, the policy parameters are 

updated using mini-batch (stochastic) gradient descent.  

The policy parameter vector θk consists of two parts, a start 

day vector θk,s and a priority vector θk,p, therefore θk ≔ [θk,s, 

θk,p]. The start day vector is an n-sized real vector, where n is 

the number of patients, and it determines the time when a 

patient’s therapy should start relative to the current date in 

days. The priority vector is a vector of size n·m, where m is the 

number of procedures, and it defines a priority value for every 

patient-procedure pair. The simulation environment expects a 

positive integer value given in minutes as the start day input. 

We apply a transformation to the start day vector θk,s, where the 

absolute value of every element in the vector is weighted by a 

proper constant (conversion from days to minutes) and rounded 

up to fit the input requirement of the simulation. 

 

Fig. 5. Pseudocode of the SPSA-based policy gradient algorithm 

5. Numerical experiments 

In this section we present some demonstrative simulation 

experiments about the effectiveness of our proposed solution. 

We mainly investigated the performance of our scheduling 

(resource management) optimization algorithm in the case 

when both the start day and the priorities were optimized. 

We studied a configuration with seven patients and three 

production- and apheresis units. All of the other resource 

quantities were set to their minimum values. As the main 

objective of resource management is to minimize the expected 

number of protocol deviations, we investigated this quantity in 

our experiments. The total number of protocol deviations for 

all of the patients during training is illustrated in Fig. 6, where 

we have averaged the results of ten independent optimization 

runs. It can be seen that the number of protocol deviations 

approached zero during the training phase, demonstrating the 

viability of the proposed approach. Note that a protocol 

deviation can also occur as a result of the uncertainty of the 

medical procedures, hence even an optimal schedule could 

sometimes produce protocol deviations, e.g., when the variance 

of the procedure durations is large. Hence, the results indicate 

that our algorithm finds a quasi-optimal schedule. 

 

 

Fig. 6. Protocol deviations during training 

We also studied the number of protocol deviations patient-

wise for the initial and the optimized resource management 
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policies, which is shown in Fig. 7. The initial policy is a First 

Come-First Served (FCFS) policy (dispatching rule), hence the 

patients who were admitted earlier had higher priorities. In Fig. 

7 it can be observed that patients 5, 6 and 7 have no protocol 

deviations, since they are prioritized to get all the resources. 

Since we configured the number of production units to three, 

which is the main bottleneck of the therapy, it follows that the 

expected number of patients who can be treated without 

protocol deviations is also three. All the other patients have a 

high number of protocol deviations, because waiting for the 

production causes a huge delay. Fig. 7 also illustrates that the 

resource control policy generated by our algorithm is quasi-

optimal since only one patient has one protocol deviation after 

the optimization (the numbering of the patients is irrelevant). 

 

 

Fig. 7. Distribution of protocol deviations among patients 

6. Conclusions 

CAR T-cell therapies are transformative new treatments in 

the field of immunotherapy for which the efficient allocation of 

the required resources is challenging. In this paper, a novel 

reinforcement learning (RL) based resource management 

strategy was proposed, developed within the framework of the 

AIDPATH project. For this, first a flexible simulation model of 

the therapy was developed. Then, we suggested a method to 

optimize a priority-based resource control policy. This was 

achieved by a derivative-free policy gradient method which 

builds on the SPSA (Simultaneous Perturbation Stochastic 

Approximation) algorithm. Numerical experiments were also 

presented supporting the effectiveness of the approach. The 

results are indicative of the phenomenon that our method finds 

quasi-optimal solutions and significantly reduces the protocol 

deviations during the therapies. Expanding the approach to 

other kinds of therapies is a subject of future research. 
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