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Abstract: The paper studies the problem of constructing nonparametric simultaneous confi-
dence bands with nonasymptotic and distribition-free guarantees. The target function is assumed
to be band-limited and the approach is based on the theory of Paley-Wiener reproducing kernel
Hilbert spaces. The starting point of the paper is a recently developed algorithm to which we
propose three types of improvements. First, we relax the assumptions on the noises by replacing
the symmetricity assumption with a weaker distributional invariance principle. Then, we propose
a more efficient way to estimate the norm of the target function, and finally we enhance the
construction of the confidence bands by tightening the constraints of the underlying convex
optimization problems. The refinements are also illustrated through numerical experiments.
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1. INTRODUCTION

One of the core problems of system identification, machine
learning and statistics is regression, i.e., how to construct
models from a sample of noisy input-output data. The
main task of regression is typically to estimate, based on
a finite number of observations, the regression function,
which for a given input encodes the conditional expecta-
tion of the corresponding output (Cucker and Zhou, 2007).

There are a number of well-known approaches to solve re-
gression problems, such as least squares (linear regression),
prediction error and instrumental variable methods, neural
networks, and kernel machines (Györfi et al., 2002).

Standard approaches to regression often provide point
estimates, while region estimates, which are vital for
robust approaches and risk management, are typically
constructed using the asymptotic distribution of the
(scaled) estimation errors. On the other hand, from a
practical point a view, methods with nonasymptotic and
distribution-free guarantees are preferable. There are vari-
ous types of region estimates that we can consider, which
include confidence regions in the parameter space (Csáji
et al., 2014), confidence or credible bands for the expected
outputs at given query points (Rasmussen and Williams,
2006), and prediction regions for the next (noisy) observa-
tions (Vovk et al., 2005; Garatti et al., 2019).

⋆ This research was supported by the European Union within the
framework of the Artificial Intelligence National Laboratory, RRF-
2.3.1-21-2022-00004; and by the TKP2021-NKTA-01 grant of the
National Research, Development and Innovation Office, Hungary.

This paper focuses on building simultaneous confidence
bands for the regression function. In a parametric setting
such regions are simply induced by confidence regions in
the parameter space, however, in a nonparametric setting
these indirect approaches are typically not suitable.

When the data are Gaussian, an impressive framework is
offered by Gaussian process regression (Rasmussen and
Williams, 2006), which can provide prediction regions for
the outputs, and credible regions for the expected outputs.
However, in practical situations the Gaussianity assump-
tion is sometimes too strong, which motivates alternative
approaches with weaker statistical assumptions.

In a recent paper a novel nonasymptotic method was sug-
gested to build data-driven confidence bands for bounded,
band-limited (regression) functions based on the theory
of Paley-Wiener kernels (Csáji and Horváth, 2022). It is
distribution-free in the sense that only mild statistical
assumptions are required about the noise on the obser-
vations, such as they are symmetric, independent from
the inputs, and that the sample contains independent and
identically distributed (i.i.d.) input-output pairs. On the
other hand, the distribution of the inputs is assumed to be
known, in particular, uniformly distributed.

In this paper we propose three refinements over the origi-
nal construction. Our main contributions are:

(1) The original method assumed that the noises are dis-
tributed symmetrically about zero. Here, we replace
this assumption with a distributional invariance prin-
ciple. As the i.i.d. nature of the noises already satisfy
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a distributional invariance, i.e., to permutations, this
allows discarding the symmetricity assumption. On
the other hand, if we know that the distriubions are
symmetric, it can still be exploited by incorporating
that knowledge in the applied transformation group.

(2) An important part of the original method is that we
need to estimate the L2 norm of the target band-
limited function. Here, we suggest a more efficient way
to estimate this norm by tightening the constraints of
the underlying convex optimization problem.

(3) Finally, the constraint tightening idea is also applied
to enhance the construction of the confidence inter-
vals at each input, which results in less conservative
region estimates. The new method comes with the
same types of guarantees as the original method has.

The refined construction is supported by theoretical guar-
antees as well as several numerical experiments.

2. THEORETICAL BACKGROUND: REPRODUCING
KERNELS AND PALEY-WIENER SPACES

Kernel methods are based on the concept of Reproducing
Kernel Hilbert Spaces (RKHSs) and have a wide range
of applications in machine learning, system identification
and statistics (Berlinet and Thomas-Agnan, 2004). A core
part of their popularity is the representer theorem, which
states that a regression problem in an infinite dimensional
RKHS can be traced back to a finite dimensional problem.

2.1 Reproducing Kernel Hilbert Spaces

Let H be a Hilbert space of functions, f : X → R, with
an inner product ⟨·, ·⟩H. If every Dirac (linear) functional,
which evaluates functions at a point, δz : f → f(z), is
continuous for all z ∈ X at any given f ∈ H, then H is
called a Reproducing Kernel Hilbert Space (RKHS).

Every RKHS has a unique kernel, k : X × X → R, which
is a symmetric and positive definite function with the so-
called reproducing property, ⟨k(·, z), f⟩H = f(z), for each
z ∈ X and f ∈ H. A consequence of this is that for any
given z, s ∈ X, we also have k(z, s) = ⟨k(·, z), k(·, s)⟩H.
According to the Moore-Aronszajn theorem, it holds true,
as well, that for every positive definite and symmetric
function, there uniquely exists an RKHS for which it is its
reproducing kernel (Berlinet and Thomas-Agnan, 2004).

The Gram matrix of kernel k with respect to given inputs
x1, x2, ..., xn is Ki,j := k(xi, xj) for all i, j ∈ {1, 2, ..., n}.
Note that matrix K ∈ Rn×n is always positive semidefi-
nite. A kernel is called strictly positive definite, if its Gram
matrix is positive definite for all distinct {xi} inputs.

2.2 Paley-Wiener Spaces

A Paley-Wiener space, H, is a subspace of L2(R), where
for each φ ∈ H the support of the Fourier transform of φ
is included in a given interval [−η, η ], where η > 0 is a
hyper-paramter. By denoting the Fourier transform of φ
by φ̂, this means that (Iosevich and Mayeli, 2015):

φ(ξ) =

∫ η

−η

e2πixξφ̂(x) dx,

thus a Paley-Wiener space contains band-limited functions.

Since H is a subspace of L2, it inherits its inner product.
A Paley-Wiener space is also an RKHS with kernel

k(z, s)
.
=

sin(η(z − s))

π(z − s)
,

where (z, s) ∈ R2 with s ̸= z, and k(s, s)
.
= η/π. From now

on, we work with the Paley-Wiener kernel define above.

3. PROBLEM SETTING

Let (x1, y1), (x2, y2), ..., (xn, yn) be a (finite) i.i.d. sample
of input-output pairs having an unknown PX,Y joint
probability distribution, where xk and yk are real-valued,
and E[y2k ] <∞. For all k ∈ [n ]

.
= {1, ..., n}, we have

yk = f∗(xk) + εk,

where {εk} are the noise terms on the true or target
function f∗ with E[εk ] = 0. Note that f∗ can be written as
f∗(x) = E[Y |X = x ], known as the regression function,
where (X,Y ) is a random vector with distribution PX,Y .

3.1 Objectives

Our primary goal is to construct simultaneous confidence
bands for the unknown f∗ function, which bands have
distribution-free guarantees with (user-chosen) confidence
probabilities for finite (possibly small) sample sizes.

More precisely, we aim at constructing a function I : D →
R × R, where D is the support of the input distribution,
such that I(x) = (I1(x), I2(x)) specifies the endpoints of an
interval estimate for the unknown f∗(x), for every x ∈ D,

ν(I)
.
= P

(
∀x ∈ D : I1(x) ≤ f∗(x) ≤ I2(x)

)
≥ 1− δ,

where δ ∈ (0, 1) is a user-chosen probability, often referred
to as risk. The quantity ν(I) is called the reliability of the
confidence band. By introducing the notation

I .
=

{
(x, y) ∈ D × R : y ∈ [I1(x), I2(x)]

}
,

the reliability is then ν(I) = P(graphD(f∗) ⊆ I), where
we used the definition graphD(f∗)

.
= {(x, f∗(x)) : x ∈ D}.

3.2 Assumptions

The main assumptions of the original construction are:

A1. The dataset, namely (x1, y1), . . . , (xn, yn) ∈ R×R, is
an i.i.d. sample of input-output pairs; E[y20 ] <∞.

A2. Each εk
.
= yk − f∗(xk), for k ∈ [n ], has a symmetric

probability distribution about zero and E[εk ] = 0. Random
variables xk and εk are independent for all k ∈ [n ].

A3. The inputs, {xk}, are distributed uniformly on [0, 1].

A4. The function f∗ is from a Paley-Wiener space, ∀x ∈
[0, 1] : |f∗(x)| ≤ 1; and f∗ is almost time-limited to [0, 1] :∫

R
f2∗ (x) I(x /∈ [0, 1]) dx ≤ δ0,

where I(·) is an indicator and δ0 > 0 is a constant.

These assumptions are rather mild, may be apart from A3,
and are discussed in detail in (Csáji and Horváth, 2022).
A3 basically means that the distribution of the inputsmust
be known. Although uniform inputs are assumed, the case
of many other classes of distributions can be traced back
to this assumption (Csáji and Horváth, 2022).
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4. HIGH-LEVEL OVERVIEW OF THE
CONFIDENCE BAND CONSTRUCTION

In this section we briefly overview the main ideas and
building blocks of the confidence band construction pro-
posed in (Csáji and Horváth, 2022). The improvements
suggested in this paper do not change this high-level pic-
ture, they only refine how the actual tasks are carried out.

First, let us recall that for a dataset {(xk, zk)}, where the
inputs {xk} are distinct (which happens with probability
one under A3), the element from H which interpolates
every output zk at the given input xk and has the smallest
kernel norm (Berlinet and Thomas-Agnan, 2004), that is

f̄
.
= argmin

{
∥f ∥H : f ∈ H & ∀k ∈ [n] : f(xk) = zk

}
,

exists and takes the following form for all input x ∈ X:

f̄(x) =

n∑
k=1

α̂kk(x, xk),

where the weights are α̂ = K−1z with z
.
= (z1, ..., zn)

T and
α̂
.
= (α̂1, ..., α̂n). Note that under our assumptions, namely

A3 and A4, this Gram matrix is almost surely invertible.

Then, the reproducing property implies ∥f∗∥2H = α̂TKα̂.
To help building intuitions, we can also recall that a kernel
norm can be seen as a measure of smoothness. In Paley-
Wiener spaces the kernel norm coincides with the L2 norm,
which is used to measure the energy of functions, as well.

The main building blocks of the approach are:

(i) First, we need to construct a guaranteed simultaneous
confidence region, Θ, for some of true (noiseless)
outputs of the target function at the observed inputs.
Namely, we need to construct a set that stochastically
guarantees to contain f∗(xk), for k = 1, . . . , d, where
d ≤ n is user-chosen (since the data is i.i.d., it is
w.l.o.g. that we choose the first d). This is a nontrivial
task, nonetheless it is “easier” than constructing a
confidence band for the whole function. For this step,
we build on the results of (Csáji and Kis, 2019).

(ii) Using the confidence set Θ ⊆ Rd for the true values
of f∗ at some observed inputs, constructed in step (i),
we calculate a high probability upper bound, τ , for the
kernel norm (square) of the true function.

(iii) Then, for each input query point x0 ∈ D, we can
construct a confidence interval for f∗(x0) as follows.
We keep a candidate value z0 in the confidence region
if and only if there is a z = (z1, . . . , zd)

T ∈ Θ, such
that the minimum norm interpolation of the dataset
{(xk, zk)}dk=1 ∪ {(x0, z0)} has a norm (square) less
than or equal to τ (i.e., our upper bound for ∥f∗∥2H).

In order to make this approach applicable, apart from the
method in (i), we need a way to guarantee an upper bound
for the norm (square) of the true function. Besides that,
we also need to give an efficient method to compute the
endpoints of the confidence intervals for every x0 ∈ D.

5. GRADIENT-PERTURBATION METHODS

We use the Kernel Gradient-Perturbation (KGP) method
(Csáji and Kis, 2019) for step (i). KGP is a generalization
of the Sign-Perturbed Sums (SPS) method (Csáji et al.,
2014), hence we start with a brief overview of SPS.

5.1 Sign-Perturbed Sums

The standard SPS method can construct exact, nonasymp-
totic and distribution-free confidence regions for the true
parameters of linear regression problems, such as

yk
.
= φT

k θ
∗ + εk, (1)

for k = 1, . . . , n, where θ∗ ∈ Rd is the ”true” parameter.

The SPS construction can be best understood as a way
to test the following hypothesis: θ = θ∗. If it holds,
one can compute the exact realization of the noise terms
ε
.
= (ε1, ..., εn)

T by “inverting” the system in (1). Then, it
builds several perturbed datasets based on the (estimated)
noise terms and using a symmetricity assumption (A2).
The hypothesis is accepted if the new datasets are “simi-
lar” to the original, which is decided based on a rank-test.

In the core of algorithm, there are evaluation functions,

Zi(θ)
.
= ∥Ψ1/2ΦTGi

(
y − Φθ

)
∥22,

for i ∈ {0, 1, . . . ,m − 1}, where Φ
.
= [φ1, ..., φn]

T ,Ψ =
(ΦTΦ)−1, m > 0 is a user-chosen integer, G0

.
= I, the

identity matrix, and for i ̸= 0, Gi
.
= diag(αi,1, . . . , αi,n);

{αi,j} are i.i.d. Rademacher variables (random variables
which take values +1 and −1 with probability 1/2 each);
and diag(·) builds a diagonal matrix from the argument.

For the case θ = θ∗, we have y − Φθ = ε, then

Z0(θ
∗) = ∥Ψ1/2ΦTε ∥22

d
= ∥Ψ1/2ΦTGi ε ∥22 = Zi(θ

∗),

for i = 1, ...,m−1, where “
d
=” denotes equality in distribu-

tion. These variables are not independent, however, they
are exchangeable (Csáji et al., 2014). On the other hand, as
∥θ − θ∗∥2 increases, the chance that Z0(θ) dominates the
other (perturbed) {Zi(θ)}i̸=0 variables increases, as well.

The normalized rank of Z0(θ) is defined as

R(θ)
.
=

1

m

[
1 +

∑m−1

i=1
I (Z0(θ) ≺ Zi(θ))

]
,

where I(·) is an indicator function (the value it takes is 1
if its argument is true and 0 otherwise), and “≺” is the
usual “<” with random tie-breaking (Csáji et al., 2014).

Any rational target confidence probability p ∈ (0, 1) can
be written in the form of p = 1 − q/m, where 0 < q < m
are integers. The SPS method will accept the hypothesis
θ = θ∗ if R(θ) ≤ p, and rejects it otherwise. Hence, the
SPS confidence region is defined as:

Θ̂p
.
=

{
θ ∈ Rd : R(θ) ≤ p

}
.

It can be proved that P(θ∗ ∈ Θ̂p) = p, i.e., these regions
have exact confidence probabilities (Csáji et al., 2014).

5.2 Ellipsoidal Outer-Approximation of SPS Regions

We can construct ellipsoidal outer approximations for the
SPS confidence regions (Csáji et al., 2014) taking the form

Θ̂p ⊆ Θ̃p
.
=

{
θ ∈ Rd : (θ − θ̂n)

TRn(θ − θ̂n) ≤ γ∗
}
,

where θ̂n is the LS estimate, Rn
.
= 1/nΦTΦ and the radius,

γ∗, is the q th largest of the {γi}m−1
i=1 values defined by

γi
.
= max

{θ:Z0(θ)≤Zi(θ)}
Zi(θ).

Unfortunately, the optimization problems above are not
convex. Nevertheless, it can be proven by building on
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duality theory that the following (convex) semi-definite
problem has the same optimal value (Csáji et al., 2014):

minimize γ

subject to λ ≥ 0[
−I + λAi λbi
λbTi λci + γ

]
⪰ 0,

(2)

where “⪰” denotes p.s.d. ordering, and Ai, bi and ci are

Ai
.
= I −R

− 1
2

n QiR
−1
n QiR

− 1
2T

n ,

bi
.
=R

− 1
2

n QiR
−1
n (ψi −Qiθ̂n),

ci
.
=−ψT

i R
−1
n ψi + 2θ̂TnQiR

−1
n ψi − θ̂TnQiR

−1
n Qiθ̂n,

where matrix Qi and vector ψi take the form

Qi
.
=

1

n
ΦTGiΦ, and ψi

.
=

1

n
ΦTGi y,

where y
.
= (y1, . . . , yn)

T is the vector of outputs.

Due to its construction, we have P(θ∗ ∈ Θ̃p) ≥ p.

5.3 Kernel Gradient Perturbation

To construct a confidence ellipsoid for the first d function
values of f∗, i.e., step (i) of the algorithm, we apply the
KGP method (Csáji and Kis, 2019), an extension of SPS.

KGP builds confidence regions for ideal representations. A
representation f ∈ H is called ideal w.r.t. {xk}dk=1, if it
has the property that f(xk) = f∗(xk), for all k ∈ [d ].

Let us consider the following problem, for a given λ ≥ 0:

minimize (y −K1θ)
T(y −K1θ) + λ θTK2θ,

where K1 ∈ Rn×d is the Gram matrix K having the last
n− d columns removed, and K2 ∈ Rd×d is K1 having the
last n − d rows removed. This can be reformulated as a
least squares problem, ∥v − Φθ∥2, by using

Φ =

[
K1

√
λK

1
2
2

]
, v =

[
y

0

]
,

where K
1
2
2 denotes the principal, non-negative square root

of K2, which exists as K2 is positive semi-definite.

We search for θ̃ ∈ Rd ideal vector, such that for every
k ∈ [d ], we have (K1θ̃)(k) = f∗(xk). We can apply the
outer approximation approach of SPS to the reformulated
problem to build a guaranteed confidence ellipsoid for ideal
vector θ̃. Note that only the first d residuals should be
perturbed, when SPS is applied, as we can only reconstruct
the first d noise variables (Csáji and Horváth, 2022).

5.4 First Refinement: Distributional Invariance

The original confidence region construction assumed sym-
metric noises (see A2), as it mainly applied SPS, but
this assumption can be relaxed. It is in fact enough if we
assume a distributional invariance for the noises, that is

A5. Each noise term has zero mean, E
[
εk
]
= 0, variables

xk and εk are independent, for k ∈ [n], and for a compact

matrix group, G ⊆ Rn×n, it holds that ∀G ∈ G : Gε
d
= ε.

The stochastic guarantees of KGP methods remain valid
under this assumption, as well (Csáji and Kis, 2019).

Symmetric noises are special cases of A5, as we can use
the group of diagonal matrices which contain only +1
and −1 values as G. Other examples are, e.g., if the
noises are exchangeable, the group of permutation matrices
satisfy this property. As A1 guarantees exchangeability,
the symmetricity assumption is not needed anymore for
the permutation variant. For SPS, the permutation variant
was originally proposed in (Kolumbán et al., 2015).

Because of A1, the default choice for the refined confidence
band method is the group of permutation matrices.

The construction of SPS then can be recasted with any
matrix group that guarantees distributional invariance.
For example, if we use the group of permutations, the
construcion of ellipsoidal outer approximation remains the
same, only matrix Qi and vector ψi changes to

Qi
.
=

1

n
ΦTPiΦ, and ψi

.
=

1

n
ΦTPi y,

where Pi is a random (uniform) permutation matrix.

As in the case of sign-changes, if we apply random permu-
tations when we construct a confidence ellipsoid for the
ideal vector θ̃, we should only perturb the indices of the
first d residuals, as we can only reconstruct the first d noise
terms. Therefore, we should use matrices

Gi =

[
Pi 0
0 In−d

]
,

where Pi ∈ Rd×d is a random permutation matrix, and
In−d ∈ R(n−d)×(n−d) is the identity matrix.

6. UPPER BOUND FOR THE KERNEL NORM

The original construction estimated ∥f∗∥2H as follows. Let
us define φk

.
= (k(x1, xk), . . . , k(xn, xk))

T, we know that

f∗(xk) = φT
k θ̃, for k ∈ [d ], where θ̃ is the (unknown)

parameter vector of the ideal representation. We saw that
for any (rational) probability β ∈ (0, 1) we can construct

a confidence ellipsoid, Θ̃β , such that it contains θ̃ with
probability at least 1− β. Then, we can construct (proba-
bilistic) upper and lower bounds of f∗(xk) by maximizing

and minimizing φT
k θ, for θ ∈ Θ̂β . Let us introduce

νk
.
= min

θ∈Θ̃β

φT
k θ and µk

.
= max

θ∈Θ̃β

φT
k θ,

for all k ∈ [d ], which (convex) problems have analytical
solutions (Csáji and Horváth, 2022). Then, the intervals
[νk, µk], for k ∈ [d ], are simultaneous confidence intervals
for the first d functions values, f∗(xk), for k ∈ [d ]. That is

P
(
∀k ∈ [d ] : f∗(xk) ∈ [νk, µk ]

)
≥ 1− β.

Using these intervals, an upper bound for ∥f∗∥2H is

τ
.
=

1

d

d∑
k=1

max{ν2k , µ2
k}+

√
ln(α)

−2d
+ δ0,

where α ∈ (0, 1) is a risk probability. This bound construc-
tion guarantees that (Csáji and Horváth, 2022)

P
(
∥f∗∥2H ≤ τ

)
≥ 1− α− β.

A fundamental property which made this bound construc-
tion possible is that the kernel norm of a Paley-Wiener
space coincides with the well-known L2 norm.
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6.1 Second Refinement: Improved Norm Bound

In this section, we present a more efficient way to construct
an upper bound for ∥f∗∥2H. The issue with the original
construction is that the intervals [νk, µk], for k ∈ [d ], are
constructed independently, as if choosing a function value
at an input could not influence the choice of function values
at other inputs. This might lead to conservative results.

Assume for simplicity that λ = 0. Then Φ = K1 and the
ellipsoidal outer approximation takes the following form

Θ̂β
.
=

{
θ ∈ Rn : (θ−θ̂)T(1/n)KT

1 K1 (θ−θ̂) ≤ γ∗
}
, (3)

where θ̂ is the LS estimate and β is a risk probability.

After dividing both sides of (3) by γ∗, and by introducing
H

.
= 1

nγ∗K
T
1 K1, the confidence ellipsoid becomes

Θ̂β
.
=

{
θ ∈ Rn : (θ − θ̂)TH (θ − θ̂) ≤ 1

}
, (4)

This ellipsoid contains (with high probability) the coeffi-
cients of the ideal representation. The function values of
the ideal representation can be calculated using the matrix
K2. Hence, in order to get a confidence ellipsoid for the
function values at the first d inputs, we need to transform
ellipsoid (4) by K2. By multiplying both sides of (4) by
K2, the Hessian of the ellipsoid becomes K−1

2 HK−1
2 , and

the center will be K2θ̂. Finally, we arrived at

Z .
=

{
z ∈ Rd : (z −K2θ̂)

TK−1
2 HK−1

2 (z −K2θ̂) ≤ 1
}
,

which, by construction, has the property that

P
(
(f∗(x1), . . . , f∗(xd))

T ∈ Z
)
≥ 1− β. (5)

With this, we can provide an improved upper bound for
the norm. Let us denote z

.
= (z1, ..., zd). Instead of using

the absolute maximum of every single d data points, we
can solve an optimization problem with respect to Z as:

minimize − 1

d
∥z∥2 subject to z ∈ Z. (6)

This problem is not convex, but thanks to strong duality,
we can solve the dual problem instead (Boyd et al., 2004).

By introducing A1
.
= K−1

2 HK−1
2 , bT1

.
= −θ̂THK−1

2 , and

c1
.
= θ̂THθ̂ − 1, the constraint of (6) can be written as

zTA1z + 2 bT1 z + c1 ≤ 0.

With this notation, we can apply a result from (Boyd et al.,
2004, B.1) about the dual of (even nonconvex) quadratic
problems that have only one quadratic constraint to get

maximize ξ

subject to ϱ ≥ 0[
A0 + ϱA1 ϱ b1
ϱ bT1 ϱ c1 − ξ

]
⪰ 0,

(7)

where A0
.
= − 1

dI comes from the optimization objective.

Problem (7) is always convex and can be computed effi-
ciently. If we denote the optimal solution by ξ∗, then the
upper bound for the norm square of f∗ is the following:

τ0
.
= ξ∗ +

√
ln(α)

−2d
+ δ0.

It could be shown that the refined bound τ0 comes with
the same stochastic guarantees as the original bound τ .

7. CONFIDENCE INTERVALS AT QUERY INPUTS

The final step of the confidence band construction is that
we should be able to provide a confidence interval for any
given input query point x0 ∈ D with x0 ̸= xk, for k ∈ [d ].

In the original construction, the boundaries of the confi-
dence intervals are given by two convex problems:

min /max z0

subject to (z0, . . . , zd)K
−1
0 (z0, . . . , zd)

T ≤ τ

ν1 ≤ z1 ≤ µ1, . . . , νd ≤ zd ≤ µd,

(8)

where “min /max” means that the problem must be solved
as a minimization and also as a maximization; and

K0(i+ 1, j + 1)
.
= k(xi, xj),

is the extended Gram matrix for i, j = 0, 1, . . . , d.

The intuition behind this construction was discussed in
Section 4: we should be able to interpolate each possible
point in the intervals [νk, µk], for k ∈ [d ], as well as z0
with a function that has a norm square not bigger then τ .

This construction guarantees (Csáji and Horváth, 2022)

P( graphD(f∗) ⊆ I ) ≥ 1− α− β,

under the assumptions A1, A2, A3, and A4.

7.1 Third Refinement: Improved Confidence Intervals

We have constructed ellipsoid Z to satisfy property (5).
Using this, we can also refine the confidence interval con-
struction problem(s) presented by (8): the box constraints
given by the confidence intervals should be replaced by an
ellipsoidal constraint given by Z, formally:

min /max z0

subject to (z0, . . . , zd)K
−1
0 (z0, . . . , zd)

T ≤ τ0

(z1, ..., zd) ∈ Z,
(9)

where we also used the improved norm bound τ0. These
problems are convex, they can be solved efficiently.

8. NUMERICAL EXPERIMENTS

The algorithms were also implemented and tested numer-
ically. The Paley-Wiener RKHS was used with parameter
η = 30. The “true” data-generating function was con-
structed as follows: first, 20 random input points {x̄k}20k=1
were generated, with uniform distribution on [0, 1]. Then

f∗(x) =
∑20

k=1 wkk(x, x̄k) was created, where each wk

had a uniform distribution on [−1, 1]. The function was
normalized, in case its maximum value exceeded 1.

8.1 Confidence Bands for Non-Symmetric Noises

In the non-symmetric case, we implemented the previously
introduced, permutation-based approach, and combined it
with the refined convex programs, presented in (7) and
(9), to construct simultaneous confidence bands.

We generated n = 300 noisy observations from f∗. The
measurement noise had the following distribution: ε ∼
exp(λ)− 1/λ, where our choice of parameter was λ = 0.25.
This distribution also fulfils the criteria given in A5, since
its expected value is 0, however, it is not symmetric
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Fig. 1. Random permutation based simultaneous confi-
dence bands with exponentitally distributed noises;
all of the three proposed refinements were used.

due to the properties of the exponential distribution. We
compared our results on different significance levels.

Figure 1 shows that the refined approach leads to infor-
mative and adequate simultaneous confidence bands, even
when the measurement noise is non-symmetric.

8.2 Comparing the Original and the Refined Methods

We also tested our refined convex programs for symmetric
noises. In this case, the original sign-perturbation based
KGP method was used for constructing the confidence
ellipsoid in step (i). The aim was to measure the improve-
ments provided by the reformulated convex programs (7)
and (9) over their original counterparts.

We had n = 300 random noisy observations from f∗. The
measurement noise {εk} had Laplace distribution with
location µ = 0 and scale b = 0.25 parameters.

The experiment presented in Figure 2 confirms that the
refined construction is more efficient, less conservative.

Remark 1. The convex programs in (7) and (9) both
include the inverse of the Gramian matrix that may be
numerically unstable for certain kernels. There are various
ways to handle this, the simplest is to add a tiny constant
times the identity matrix to Gramian before inverting it.

9. CONCLUSIONS

In this paper, we have investigated the problem of con-
structing nonparametric simultaneous confidence bands
with nonasymptotic and distribution-free guarantees. The
starting point was a recent Paley-Wiener kernel-based
construction (Csáji and Horváth, 2022), for which three
improvements were proposed. First, (1) the assumptions
about the measurement noises were relaxed, by allowing
non-symmetric noises. Then, (2) the construction of a
high-probability upper bound for the norm was refined by
introducing a convex program to calculate a more efficient
bound. Finally, (3) the convex programs for building a
confidence interval at any given query point was refined
by replacing the box constraints with an ellipsoidal one.

0.0 0.2 0.4 0.6 0.8 1.0

−2

−1

0

1

2

Simultaneous confidence bands (Laplace noise)

all data points
selected data points
90% confidence band 
 (original convex programs)

90% confidence band 
 (new convex programs)
original function

Fig. 2. Sign-changes based simultaneous confidence bands
with Laplace noises; comparing the refined convex
programs (7) and (9) with the original ones.
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