Distribution-Free Uncertainty Quantification for Kernel Methods by Gradient Perturbations

Balázs Csanád Csáji & Krisztián Balázs Kis

Institute for Computer Science and Control (SZTAKI), Budapest, Hungary

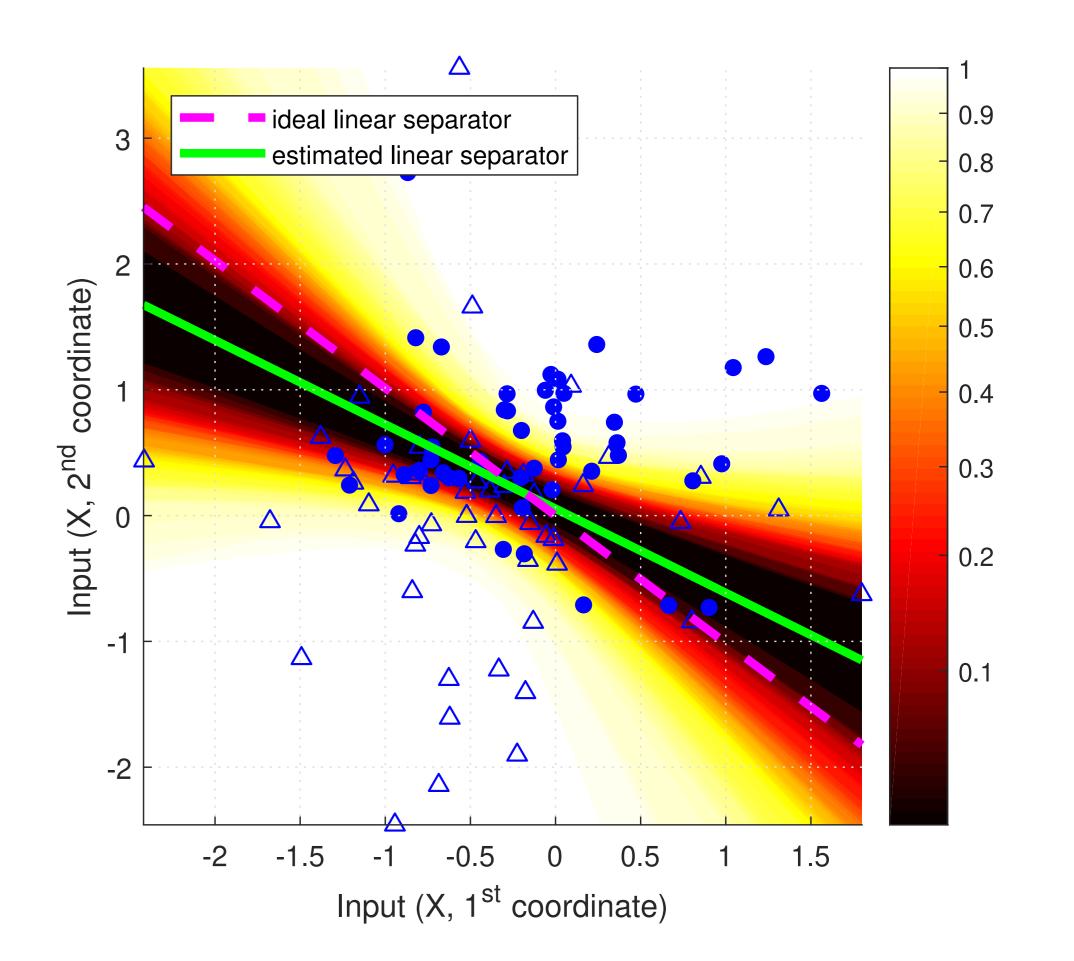
Overview

- Data-driven *uncertainty quantification* (UQ) for models built by kernel methods.
- UQ takes the form of *confidence regions* for ideal representations of the true function.
- The core idea is to *perturb the residuals* in the *gradient* of the objective function. • *Distribution-free* (unlike GP regression), only some mild regularities are assumed. • Non-asymptotic (finite sample) guarantees. • *Exact* (user-chosen) coverage probabilities. • Convex quadratic problems and symmetric noises \Rightarrow the regions are *star convex* and have *ellipsoidal outer approximations*. • Examples: LS-SVM, KRR, SVR & kLASSO.

Main Assumptions

A1 The kernel, k, is strictly positive definite and all inputs, $\{x_i\}$, are almost surely distinct.

A2 The input vector x and the noise vector ε are independent (from each other, not internally).



Preliminaries

We are given a *data sample*, \mathcal{D}_n , of observations, $(x_1, y_1), \ldots, (x_n, y_n) \in \mathcal{X} \times \mathbb{R},$ with $\mathcal{X} \neq \emptyset$. Let $x \doteq (x_1, \ldots, x_n)^T \in \mathcal{X}^n$ and $y \doteq (y_1, \ldots, y_n)^T \in \mathbb{R}^n$. The Gram matrix of a *kernel* $k : \mathcal{X} \times \mathcal{X} \to \mathbb{R}$, w.r.t. input vector x, is $[\mathbf{K}_x]_{i,j} \doteq k(x_i, x_j).$

A3 The noises, $\{\varepsilon_i\}$, are distrib. invariant w.r.t. a known group of transformations, (\mathcal{G}, \circ) .

A4 The gradient, or a subgradient, of the objective w.r.t. α exists and it only depends on y through the residuals, i.e., there is \overline{g} , $\nabla_{\alpha} g(f_{\alpha}, \mathcal{D}_n) = \bar{g}(x, \alpha, \hat{\varepsilon}(x, y, \alpha)),$ where the residuals are defined as

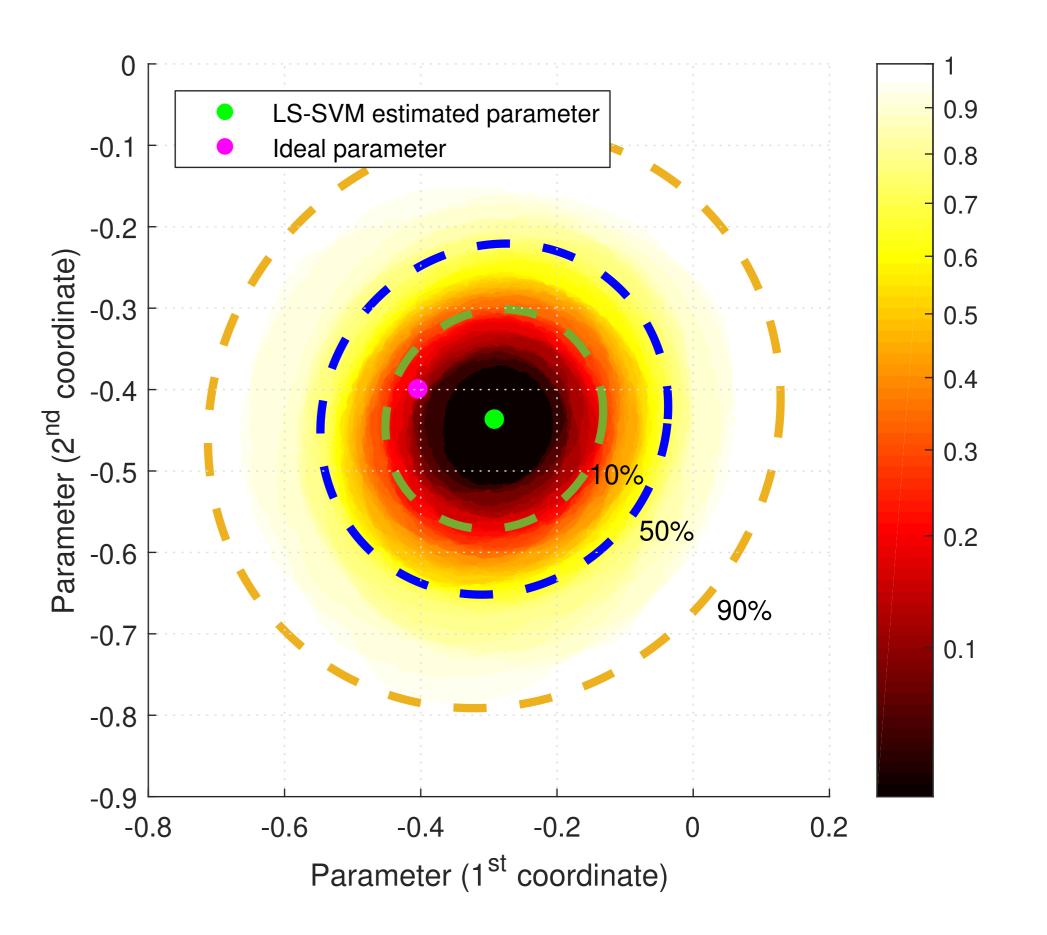
 $\widehat{\varepsilon}(x, y, \alpha) \doteq y - \mathbf{K}_x \alpha.$

 $A1 \Rightarrow \alpha^*$ is a.s. unique; $A2 \Rightarrow$ no autoregression; $A3 \Rightarrow \varepsilon$ can be perturbed; A4 holds in most cases.

Perturbed Gradients

Let us define a *reference* function, $Z_0 : \mathbb{R}^n \to \mathbb{R}$, and m-1 *perturbed* functions, $\{Z_i\}$, with Z_i : $\mathbb{R}^n \to \mathbb{R}$, where *m* is a hyper-parameter, as $Z_0(\alpha) \doteq \| \Psi(x) \,\overline{g}(x, \alpha, G_0(\widehat{\varepsilon}(x, y, \alpha))) \|^2,$ $Z_i(\alpha) \doteq \| \Psi(x) \, \bar{g}(x, \alpha, G_i(\widehat{\varepsilon}(x, y, \alpha))) \|^2,$

Figure 1: UQ for (linear) LS-SVM classification in the model space based on n = 100 observations (\mathcal{G} : sign-changes).



Let \mathcal{H} be an RKHS induced by kernel k. Then, for any *objective* function g having the form $g(f, \mathcal{D}_n) \doteq L((x_1, y_1, f(x_1)), \dots, (x_n, y_n, f(x_n)))$ $+\Lambda(\|f\|_{\mathcal{H}}),$

where L is an arbitrary loss function, Λ is a nondecreasing regularizer, there is a solution with

 $f_{\alpha}(z) = \sum_{i=1}^{n} \alpha_i k(z, x_i),$

which is ensured by the *representer theorem*.

Ideal Representations

Let the data be generated by noisy observations of an underlying *true function*, f_* , for i = 1, ..., n, $y_i \doteq f_*(x_i) + \varepsilon_i,$ where $\{\varepsilon_i\}$ are the noises; let $\varepsilon \doteq (\varepsilon_1, \ldots, \varepsilon_n)^{\mathrm{T}}$. Let $\mathcal{H}_{\alpha} \subseteq \mathcal{H}$ be the subspace of f_{α} functions. An $f_0 \in \mathcal{H}_{\alpha}$, having coefficients $\alpha^* \in \mathbb{R}^n$, is called an *ideal representation* of f_* w.r.t. \mathcal{D}_n , if for all i,

for $i = 1, \ldots, m - 1$, where $\Psi(x)$ is a weighting matrix, G_0 is the identity element of \mathcal{G} and $\{G_i\}$ are uniformly sampled i.i.d. elements from \mathcal{G} . Note that if $\alpha = \alpha^*$, $Z_0(\alpha^*) \stackrel{d}{=} Z_i(\alpha^*)$, for all *i*. On the other hand, for $\alpha \neq \alpha^*$, this distributional equivalence does not hold, and if $\|\alpha - \alpha^*\|$ is large enough, $Z_0(\alpha)$ will dominate $\{Z_i(\alpha)\}_{i=1}^{m-1}$.

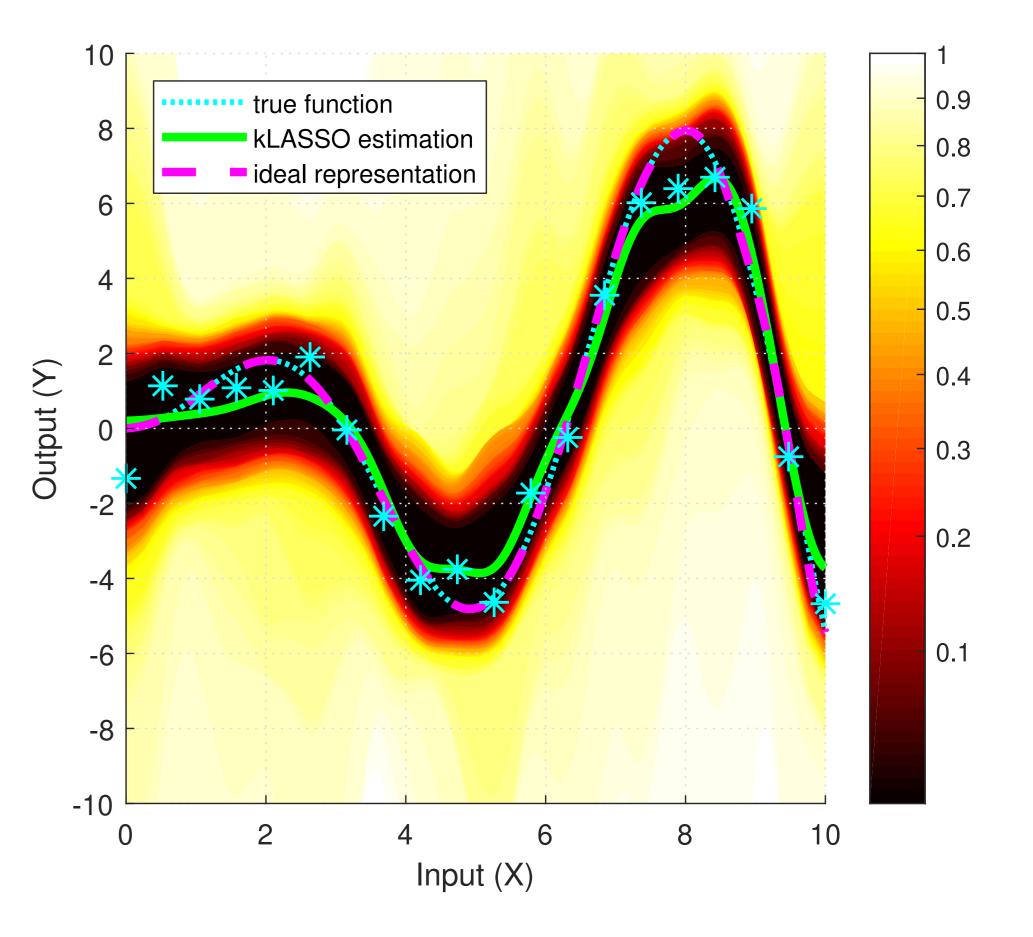
Confidence Regions

The *normalized rank* of the reference element, $Z_0(\alpha)$, among all $\{Z_i(\alpha)\}_{i=0}^{m-1}$ elements is

$$\mathcal{R}(\alpha) \doteq \frac{1}{m} \bigg[1 + \sum_{i=1}^{m-1} \mathbb{I}\big(Z_0(\alpha) \prec_{\pi} Z_i(\alpha)\big) \bigg],$$

where $\mathbb{I}(\cdot)$ is an indicator function and binary relation " \prec_{π} " is "<" with random tie-breaking. A confidence region for probability p = 1 - q/m is $A_{m} \doteq \{ \alpha \cdot \mathcal{R}(\alpha) < 1 - q/m \}$

Figure 2: UQ for (linear) LS-SVM classification in the parameter space with various non-asymptotic confidence ellipsoids.



 $f_0(x_i) = f_*(x_i).$

Note that α^* is unique if rank $(K_x) = n$, since ideal coefficients satisfy $K_x \alpha^* = (f_*(x_1), \dots, f_*(x_n))^T$.

Distributional Invariance

An \mathbb{R}^n -valued random vector ε is *distributionally invariant* w.r.t. a compact group of transformations, (\mathcal{G}, \circ) , where " \circ " is the function composition and each $G \in \mathcal{G}$ maps \mathbb{R}^n to itself, if for all $G \in \mathcal{G}$, vectors ε and $G(\varepsilon)$ have the same distribution. E.g.: $\{\varepsilon_i\}$ are *exchangeable* (\mathcal{G} : permutations); or independent and symmetric (\mathcal{G} : sign-changes).

$$p = (\alpha \cdot \mathbf{v}(\alpha) \leq 1 - 1/m),$$

where $m, q \in \mathbb{N}$ with 0 < q < m are user-chosen. The main *non-asymptotic* and *distribution-free* claim about the stochastic guarantees of A_p is:

Main Theorem

Under Assumptions A1, A2, A3 and A4, the *coverage probability* of the confidence region w.r.t. the ideal coefficient vector α^* is *exactly*

$$\mathbb{P}\left(\alpha^* \in A_p\right) = p = 1 - \frac{q}{m}$$

for any hyper-parameters with $0 < q < m$.

Figure 3: UQ for kernelized LASSO (Gaussian kernel) based on

n = 20 observations with Laplace noises (\mathcal{G} : sign-changes).

Contact Information

Email: csaji@sztaki.hu (Balázs Cs. Csáji) Website: http://www.sztaki.hu/~csaji/

Poster presented at ECML-PKDD, Würzburg, Germany, 2019