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Introduction

— Kernel methods are widely used in machine learning and related
fields (such as signal processing and system identification).

— Besides how to construct a models from empirical data, it is also
a fundamental issue how to quantify the uncertainty of the model.

— Standard solutions either use strong distributional assumptions
(e.g., Gaussian processes) or heavily rely on asymptotic results.

— Here, a new construction for non-asymptotic and distribution-free
confidence sets for models built by kernel methods are proposed.

— We target the ideal representation of the underlying true function.

— The constructed regions have exact coverage probabilities and
only require a mild regularity (e.g., symmetry or exchangeability).

— The quadratic case with symmetric noises has special importance.

— Several examples are discussed, such as support vector machines.
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Reproducing Kernel Hilbert Spaces

— A Hilbert space, H, of functions f : X — R, with inner product
(*+)q is called a Reproducing Kernel Hilbert Space (RKHS), if
Vz e X,f € H the point evaluation functional 0, : f — f(z), is
bounded (i.e., 9x > 0 with [0,(f)| < r||f||y for all f € H).

— Then, one can construct a kernel k : X x X — R, having the
reproducing property that is for all z € X and f € H, we have

(k(:,2): F )y = f(2),
which is ensured by the Riesz-Fréchet representation theorem.
— As a special case, the kernel satisfies k(z,s) = (k(-, z), k(-,5) )5
— A kernel is therefore a symmetric and positive-definite function.

— Conversely, by the Moore-Aronszajn theorem, for every symmetric
and positive definite function, there uniquely exists an RKHS.
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Examples of Kernels

Kernel k(x,y) Domain

Gaussian exp<_”+_}/”§> RY v
Linear (x,y) RY  x  x
Polynomial ((x,y) +c)P RY  x  x
Laplacian exp (M) RY v
Rat. quadratic exp(||x — y||3 + ¢2)~# R v v
Exponential exp(a(x,y)) compact x Vv
Poisson 1/(1 — 2accos(x — y) + a?) [0,27) v

Table: typical kernels; U means “universal” and C means “characteristic”
(where the hyper-parameters satisfy o, 8,¢ > 0, a € (0,1) and p € N).
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Regression and Classification

— The data sample, Z, is a finite sequence of input-output data

(leyl)a SR (Xna)/n) c X xR

where X # () and R are the input and output spaces, respectively.
- Weset x = (x1,...,x,) € X" and y = (y1,...,yn)" € R".

— We are searching for a model for this data in an RKHS containing
f : X — R functions. The kernel of the RKHS is k : X x X — R.

— The Gram matrix of the kernel with respect to inputs {x;} is
[K]l,_/ = k(Xian)'

(a data-dependent symmetric and positive semi-definite matrix)

— A kernel is called strictly positive definite if its Gram matrix, K, is
(strictly) positive definite for all possible distinct inputs {x;}.
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Regularizated Optimization Criterion

Regularized Criterion

g(f,2) = L(xa,y1,f(x1),-- - Xn, Yn, F(xn)) + Q(F)

— The loss function, £, measures how well the model fits the data,
while the regularizer, 2, controls other properties of the solution.

— Regularization can help in several issues, for example:
o To convert an ill-posed problem to a well-posed problem.
o To make an ill-conditioned approach better conditioned.

o To reduce over-fitting and thus to help the generalization.

o To force the sparsity of the solution.

o

Or in general to control shape and smoothness.
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Representer Theorem

We are given a sample, Z, a positive-definite kernel k(-,-), an
associated RKHS with a norm || - [|3 induced by (-,-),,, and a class

F={ffa :;ﬁfk(z,z;), fieR z e X, [fll <oo .

then, for any mon. increasing regularizer, Q : [0,00) — [0, 00), and
an arbitrary loss function £ : (X x R?)" — R U {oc}, the criterion

g(f, Z) = E((le}/h f(Xl))a R (Xm}/m f(Xn))) + Q( Hf”H)

has a minimizer admitting the following representation
n
fa(z) = Za,-k(z,x,-),
i=1

where a = (a1, ..., a,)T € R is a finite vector of coefficients.
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Ideal Representations

Sample Z is generated by an underlying true function f,
yi = f(xi) + e,

for i=1,...,n, where {x;} inputs and {e;} are the noise terms.

The vector of noises is denoted by € = (e1,...,¢,).

In an RKHS, we can focus on, f,(z) = Y. i_; aik(z,x;) functions.

Function f, € F is called an ideal representation of f, w.r.t. Z, if
o) = &) for all Xiy- vy Xn

the corresponding ideal coefficients are denoted by a* € R".

Gram matrix is positive-definite = exactly one ideal represent.

We aim at building confidence regions for ideal representations,
instead of the true function (which may not be in the RKHS).
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Distributional Invariance

— Our approach does not need strong distributional assumption on
the noises (such as Gaussianity). The needed property is:

An R"-valued random vector ¢ is distributionally invariant w.r.t. a
compact group of transformations, (G, o), where “o" denotes the
function composition and each G € G maps R” to itself, if for all
G € G, vectors € and G(e) have the same distribution.

— Two arch-typical examples having this property are

(1) If {ei} are exchangeable (for example: i.i.d.), then we can
use the (finite) group of permutations on the noise vector.

(2) If {€;} independent and symmetric, then we can apply the
group consisting sign-changes for any subsets of the noises.
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Main Assumptions

A1l The kernel is strictly positive definite and {x;} are a.s. distinct.
A2 The input vector x and the noise vector € are independent.

A3 The noises, {;}, are distributionally invariant with respect to a
known group of transformations, (G, o).

A4 The gradient, or a subgradient, of the objective w.r.t. « exists
and it only depends on y through the residuals, i.e., there is g,

Vag(fa,Z) = g(x,a,é\(x,y,a)),

where the residuals are defined as £(x,y,a) = y — K a.

(Al = the ideal representation is unique with prob. one; A2 = no
autoregression; A3 = ¢ can be perturbed; A4 holds in most cases.)

B. Cs. Cséji & K. B. Kis Distribution-Free UQ for Kernel Methods | 10 @2"{,‘}\,(,



Perturbed Gradients

— Let us define a reference “evaluation” function, Zp : R” — R, and
m — 1 perturbed “evaluation” functions, {Z;}, with Z; : R" — R,

Zo(a) = || W(x)g(x, @, E(x, y, @) ||,
Zi(@) = || V(x) &(x, @, GiEx, y,a))) |1%,

fori=1,...,m—1, where mis a hyper-parameter, ¥U(x) is an
(optional, possibly input dependent) weighting matrix, and {G;}
are (random) uniformly sampled i.i.d. transformations from G.

- lfa=a" = Zy(a*) g Zi(a*), foralli=1,.... m—1 (g
denotes equality in distribution; observe that £(x,y,a*) = ¢).

C

— If a # «, this distributional equivalence does not hold, and if

||oc — a* || is large enough, Zo(«) will dominate {Z;(«) ,5”;11.
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Confidence Regions

— The normalized rank of || Zp(a)||? in the ordering of {||Zi(a)||?} is
1 m—1
R(@) = =1+ S 112G < 1Z(@))].
i=1

where I(-) is an indicator function, and binary relation “<" is the
standard “<" ordering with random tie-breaking (pre-generated).

— Given any p € (0,1) with p =1 — 4/m, a confidence regions is

Confidence Region for the Ideal Coefficient Vector

A, = {aER”:R(a) < 1—%}

where 0 < g < m are user-chosen integers (hyper-parameters).
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Main Theoretical Result: Exact Coverage

Theorem: Under assumptions Al, A2, A3 and A4, the coverage
probability of A, with respect to the ideal coefficient vector a* is

* q
IP’(oz EA,,) = p = 1—;,

for any choice of the integer hyper-parameters, 0 < g < m.

— The coverage probabiltiy is exact (it is non-conservative), and
as m and g are user-chosen, probability p is under our control.

The result is non-asymptotic, as it is valid for any finite sample.

Furthermore, no particular distribution is assumed for the noises
affecting measurements, hence the ideas are distribution-free.

The needed statistical assumptions are very mild, for example,
the noises can be non-stationary, heavy-tailed, and skewed.
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Quadratic Objectives and Symmetric Noises
— Assume the noises are independent and symmetric and the
objective is convex quadratic taking the (canonical) form
. 2
gla) = [[z— oo
where z is the vector of outputs, and & is the regressor matrix.

Evaluation Function of Sign-Perturbed Sums (SPS)

Z(a) = || (#T®) 20T G, (2 - da) ||®

where G; = diag(ci1,...,0in), for i # 0, where {0} ;} are i.i.d.
Rademacher variables, they take +1 and —1 with probability 1/2.

— The SPS confidence regions are star convex with the least-squares
estimate as a center, and have ellipsoidal outer approximations.
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Least-Squares Support Vector Classification

— The primal form of (soft-margin) LS-SVM classification is

] .
minimize 7 whw + A;fi

subject to  yr(wlixkx +b) = 1 —¢&

for k=1,...,n, where A > 0 is fixed. This convex quadratic
optimization problem can be rewritten, with o = (b, wT)T, as

1
gla) = 7| Ba|? + A1, —y 0 (Xa) |7,
where 1, € R" is the all-one vector, “®" denotes the Hadamard

(entrywise) product, X = [%i,..., % ]" with % = [1, x}']T and
B = diag(0,1,...,1), the role of matrix B is to remove bias b.
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Experiment: Confidence Sets for LS-SVC

— This can be further reformulated to have the form ||z — ®«a ||,

Vi(ylh o x | VAL,
, and z =
(Yv2) B 04

— Then, under a symmetry assumption, SPS can be applied.
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Confidence Sets for Kernel Ridge Regression

— The kernelized version of RR, Kernel Ridge Regression (KRR) is

Z(f xi) = yi)2 + A3,

where f may come from an infinite dimensional RKHS.

— Using the representer theorem and the reproducing property,

1
ga) = Sly-Kal+Xa'Ka

SPS Evaluation Function for Kernel Ridge Regression

Z(a) = || (K2 + 22K [KGi(y — Ka) + 22 K*a] |
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Experiment: SPS for Kernel Ridge Regression
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Confidence Sets for Support Vector Regression

— Criterion of Support Vector Regression, for ¢ > 0 and & > 0, is
1 2 c ’ _
g(f) = §H fll3 + . > max{0,|f(x) — yi| — &}
k=1

— Using the representer theorem, Lagrangian duality and the
Karush—Kuhn-Tucker (KKT) conditions, we arrive at the dual

g°(0,5) = y"(a— B) — 5o~ 5K (0~ ) ~Z(a+ )"

subject to a, 8 € [0,¢/n]" and (o — 3)T1 = 0.

Evaluation Function for Support Vector Regression

Zi(a) = || Gi(y — Ka) — Esign(a) ||*
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Experiment: Confidence Regions for SVR
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Confidence Sets for Kernelized LASSO

— The kernelized version of LASSO leads to the objective,
g(f) = 12|y —Ka|? + Ml

Evaluation Function for Kernelized LASSO

Zi(a) = | KGi(Ka—y) + Asign(a) ||?

Output (Y)
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Experiment: Consistency (n = 10, 20, 50, and 100)
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Conclusions

A data-driven uncertainty quantification (UQ) approach was
preseted for models constructed by kernel methods.

— UQ takes the form of confidence regions for ideal representations
of the true function which we only observe via measurement noise.

— The core idea is to perturb the residuals in the gradient of the
objective function with some distributionally invariant operations.

— The resulting sets have exact (user-chosen) coverage probabilities.

— The framework is distribution-free (unlike GP regression), only
mild regularities are assumed about the noise (like symmetry).

— The method has non-asymptotic (finite sample) guarantees.

— Convex quadratic problems and symmetric noises = the regions
are star convex and have ellipsoidal outer approximations.

The ideas were demonstrated on LS-SVM, KRR, SVR & kLASSO.
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Thank you for your attention!
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