

Distribution-Free Uncertainty Quantification for Kernel Methods by Gradient Perturbations

Balázs Csanád Csáji & Krisztián Balázs Kis

SZTAKI: Institute for Computer Science and Control MTA: Hungarian Academy of Sciences

ECML-PKDD, Würzburg, Germany, September 16-20, 2019

Introduction

- Kernel methods are widely used in machine learning and related fields (such as signal processing and system identification).
- Besides how to construct a models from empirical data, it is also a fundamental issue how to quantify the uncertainty of the model.
- Standard solutions either use strong distributional assumptions (e.g., Gaussian processes) or heavily rely on asymptotic results.
- Here, a new construction for non-asymptotic and distribution-free confidence sets for models built by kernel methods are proposed.
- We target the ideal representation of the underlying true function.
- The constructed regions have exact coverage probabilities and only require a mild regularity (e.g., symmetry or exchangeability).
- The quadratic case with symmetric noises has special importance.
- Several examples are discussed, such as support vector machines.

Reproducing Kernel Hilbert Spaces

- A Hilbert space, *H*, of functions *f* : X → R, with inner product ⟨·,·⟩_H, is called a Reproducing Kernel Hilbert Space (RKHS), if ∀ z ∈ X, f ∈ H the point evaluation functional δ_z : f → f(z), is bounded (i.e., ∃ κ > 0 with |δ_z(f)| ≤ κ ||f||_H for all f ∈ H).
- Then, one can construct a kernel $k : \mathcal{X} \times \mathcal{X} \to \mathbb{R}$, having the reproducing property that is for all $z \in \mathcal{X}$ and $f \in \mathcal{H}$, we have

$$\langle k(\cdot,z),f \rangle_{\mathcal{H}} = f(z),$$

which is ensured by the Riesz-Fréchet representation theorem.

- As a special case, the kernel satisfies $k(z,s) = \langle k(\cdot,z), k(\cdot,s) \rangle_{\mathcal{H}}$.
- A kernel is therefore a symmetric and positive-definite function.
- Conversely, by the Moore-Aronszajn theorem, for every symmetric and positive definite function, there uniquely exists an RKHS.

Examples of Kernels

Kernel	k(x,y)	Domain	U	С
Gaussian	$\exp\left(\frac{-\ x-y\ _2^2}{\sigma}\right)$	\mathbb{R}^{d}	\checkmark	\checkmark
Linear	$\langle x, y \rangle$	\mathbb{R}^{d}	\times	\times
Polynomial	$(\langle x,y\rangle+c)^p$	\mathbb{R}^{d}	\times	\times
Laplacian	$\exp\left(\frac{-\ x-y\ _1}{\sigma}\right)$	\mathbb{R}^{d}	\checkmark	\checkmark
Rat. quadratic	$\exp(\ x-y\ _2^2+c^2)^{-\beta}$	\mathbb{R}^{d}	\checkmark	\checkmark
Exponential	$\exp(\sigma\langle x,y\rangle)$	compact	\times	\checkmark
Poisson	$1/(1-2\alpha\cos(x-y)+\alpha^2)$	$[0, 2\pi)$	\checkmark	\checkmark

Table: typical kernels; U means "universal" and C means "characteristic" (where the hyper-parameters satisfy $\sigma, \beta, c > 0$, $\alpha \in (0, 1)$ and $p \in \mathbb{N}$).

Regression and Classification

– The data sample, \mathcal{Z} , is a finite sequence of input-output data

$$(x_1, y_1), \ldots, (x_n, y_n) \in \mathcal{X} \times \mathbb{R}$$

where $\mathcal{X} \neq \emptyset$ and \mathbb{R} are the input and output spaces, respectively.

- We set $x \doteq (x_1, \ldots, x_n)^{\mathrm{T}} \in \mathcal{X}^n$ and $y \doteq (y_1, \ldots, y_n)^{\mathrm{T}} \in \mathbb{R}^n$.
- We are searching for a model for this data in an RKHS containing $f : \mathcal{X} \to \mathbb{R}$ functions. The kernel of the RKHS is $k : \mathcal{X} \times \mathcal{X} \to \mathbb{R}$.
- The Gram matrix of the kernel with respect to inputs $\{x_i\}$ is

$$[K]_{i,j} \doteq k(x_i, x_j).$$

(a data-dependent symmetric and positive semi-definite matrix)

 A kernel is called strictly positive definite if its Gram matrix, K, is (strictly) positive definite for all possible distinct inputs {x_i}.

Regularizated Optimization Criterion

Regularized Criterion

$$g(f,\mathcal{Z}) = \mathcal{L}(x_1, y_1, f(x_1), \ldots, x_n, y_n, f(x_n)) + \Omega(f)$$

- The loss function, \mathcal{L} , measures how well the model fits the data, while the regularizer, Ω , controls other properties of the solution.
- Regularization can help in several issues, for example:
 - $\circ~$ To convert an ill-posed problem to a well-posed problem.
 - To make an ill-conditioned approach better conditioned.
 - $\circ~$ To reduce over-fitting and thus to help the generalization.
 - To force the sparsity of the solution.
 - Or in general to control shape and smoothness.

Representer Theorem

We are given a sample, \mathcal{Z} , a positive-definite kernel $k(\cdot, \cdot)$, an associated RKHS with a norm $\|\cdot\|_{\mathcal{H}}$ induced by $\langle \cdot, \cdot \rangle_{\mathcal{H}}$, and a class

$$\mathcal{F} \doteq \Big\{ f \mid f(z) = \sum_{i=1}^{\infty} \beta_i k(z, z_i), \, \beta_i \in \mathbb{R}, \, z_i \in \mathcal{X}, \, \|f\|_{\mathcal{H}} < \infty \Big\},$$

then, for any mon. increasing regularizer, $\Omega : [0, \infty) \to [0, \infty)$, and an arbitrary loss function $\mathcal{L} : (\mathcal{X} \times \mathbb{R}^2)^n \to \mathbb{R} \cup \{\infty\}$, the criterion

$$g(f,\mathcal{Z}) \doteq \mathcal{L}((x_1,y_1,f(x_1)),\ldots,(x_n,y_n,f(x_n))) + \Omega(||f||_{\mathcal{H}})$$

has a minimizer admitting the following representation

$$f_{\alpha}(z) = \sum_{i=1}^{n} \alpha_i k(z, x_i),$$

where $\alpha \doteq (\alpha_1, \ldots, \alpha_n)^T \in \mathbb{R}^n$ is a finite vector of coefficients.

Ideal Representations

– Sample \mathcal{Z} is generated by an underlying true function f_*

$$y_i \doteq f_*(x_i) + \varepsilon_i,$$

for i = 1, ..., n, where $\{x_i\}$ inputs and $\{\varepsilon_i\}$ are the noise terms.

- The vector of noises is denoted by $\varepsilon \doteq (\varepsilon_1, \dots, \varepsilon_n)$.
- In an RKHS, we can focus on, $f_{\alpha}(z) = \sum_{i=1}^{n} \alpha_i k(z, x_i)$ functions.
- Function $f_{\alpha} \in \mathcal{F}$ is called an ideal representation of f_* w.r.t. \mathcal{Z} , if

$$f_{\alpha}(x_i) = f_*(x_i),$$
 for all x_1, \ldots, x_n

the corresponding ideal coefficients are denoted by $\alpha^* \in \mathbb{R}^n$.

- Gram matrix is positive-definite \Rightarrow exactly one ideal represent.
- We aim at building confidence regions for ideal representations, instead of the true function (which may not be in the RKHS).

Distributional Invariance

 Our approach does not need strong distributional assumption on the noises (such as Gaussianity). The needed property is:

An \mathbb{R}^n -valued random vector ε is distributionally invariant w.r.t. a compact group of transformations, (\mathcal{G}, \circ) , where " \circ " denotes the function composition and each $G \in \mathcal{G}$ maps \mathbb{R}^n to itself, if for all $G \in \mathcal{G}$, vectors ε and $G(\varepsilon)$ have the same distribution.

- Two arch-typical examples having this property are
 - If {ε_i} are exchangeable (for example: i.i.d.), then we can use the (finite) group of permutations on the noise vector.
 - (2) If {ε_i} independent and symmetric, then we can apply the group consisting sign-changes for any subsets of the noises.

Main Assumptions

- A1 The kernel is strictly positive definite and $\{x_i\}$ are a.s. distinct.
- A2 The input vector x and the noise vector ε are independent.
- A3 The noises, $\{\varepsilon_i\}$, are distributionally invariant with respect to a known group of transformations, (\mathcal{G}, \circ) .
- A4 The gradient, or a subgradient, of the objective w.r.t. α exists and it only depends on y through the residuals, i.e., there is \bar{g} ,

$$\nabla_{\alpha} g(f_{\alpha}, \mathcal{Z}) = \bar{g}(x, \alpha, \widehat{\varepsilon}(x, y, \alpha)),$$

where the residuals are defined as $\widehat{\varepsilon}(x, y, \alpha) \doteq y - K \alpha$.

(A1 \Rightarrow the ideal representation is unique with prob. one; A2 \Rightarrow no autoregression; A3 $\Rightarrow \varepsilon$ can be perturbed; A4 holds in most cases.)

Perturbed Gradients

- Let us define a reference "evaluation" function, $Z_0 : \mathbb{R}^n \to \mathbb{R}$, and m-1 perturbed "evaluation" functions, $\{Z_i\}$, with $Z_i : \mathbb{R}^n \to \mathbb{R}$,

$$Z_0(\alpha) \doteq \| \Psi(x) \, \bar{g}(x, \alpha, \hat{\varepsilon}(x, y, \alpha)) \, \|^2,$$

$$Z_i(\alpha) \doteq \| \Psi(x) \, \bar{g}(x, \alpha, G_i(\widehat{\varepsilon}(x, y, \alpha))) \, \|^2,$$

for i = 1, ..., m - 1, where m is a hyper-parameter, $\Psi(x)$ is an (optional, possibly input dependent) weighting matrix, and $\{G_i\}$ are (random) uniformly sampled i.i.d. transformations from \mathcal{G} .

- If $\alpha = \alpha^* \Rightarrow Z_0(\alpha^*) \stackrel{d}{=} Z_i(\alpha^*)$, for all $i = 1, \dots, m-1$ (" $\stackrel{ud}{=}$ " denotes equality in distribution; observe that $\widehat{\varepsilon}(x, y, \alpha^*) = \varepsilon$).
- If $\alpha \neq \alpha^*$, this distributional equivalence does not hold, and if $\|\alpha \alpha^*\|$ is large enough, $Z_0(\alpha)$ will dominate $\{Z_i(\alpha)\}_{i=1}^{m-1}$.

Confidence Regions

- The normalized rank of $||Z_0(\alpha)||^2$ in the ordering of $\{||Z_i(\alpha)||^2\}$ is

$$\mathcal{R}(\alpha) \doteq \frac{1}{m} \bigg[1 + \sum_{i=1}^{m-1} \mathbb{I}\big(\|Z_i(\alpha)\|^2 \prec \|Z_0(\alpha)\|^2 \big) \bigg],$$

where I(·) is an indicator function, and binary relation "≺" is the standard "<" ordering with random tie-breaking (pre-generated).
Given any p ∈ (0, 1) with p = 1 - q/m, a confidence regions is

Confidence Region for the Ideal Coefficient Vector

$$A_{p} \doteq \left\{ \alpha \in \mathbb{R}^{n} : \mathcal{R}(\alpha) \leq 1 - \frac{q}{m} \right\}$$

where 0 < q < m are user-chosen integers (hyper-parameters).

Main Theoretical Result: Exact Coverage

Theorem: Under assumptions A1, A2, A3 and A4, the coverage probability of A_p with respect to the ideal coefficient vector α^* is

$$\mathbb{P}(\alpha^* \in A_p) = p = 1 - \frac{q}{m},$$

for any choice of the integer hyper-parameters, 0 < q < m.

- The coverage probability is exact (it is non-conservative), and as m and q are user-chosen, probability p is under our control.
- The result is non-asymptotic, as it is valid for any finite sample.
- Furthermore, no particular distribution is assumed for the noises affecting measurements, hence the ideas are distribution-free.
- The needed statistical assumptions are very mild, for example, the noises can be non-stationary, heavy-tailed, and skewed.

Quadratic Objectives and Symmetric Noises

 Assume the noises are independent and symmetric and the objective is convex quadratic taking the (canonical) form

$$g(\alpha) \doteq \|z - \Phi \alpha\|^2$$

where z is the vector of outputs, and Φ is the regressor matrix.

Evaluation Function of Sign-Perturbed Sums (SPS)

$$Z_{i}(\alpha) \doteq \left\| \left(\Phi^{\mathrm{T}} \Phi \right)^{-1/2} \Phi^{\mathrm{T}} G_{i} \left(z - \Phi \alpha \right) \right\|^{2}$$

where $G_i = \text{diag}(\sigma_{i,1}, \ldots, \sigma_{i,n})$, for $i \neq 0$, where $\{\sigma_{i,j}\}$ are i.i.d. Rademacher variables, they take +1 and -1 with probability 1/2.

- The SPS confidence regions are star convex with the least-squares estimate as a center, and have ellipsoidal outer approximations.

Least-Squares Support Vector Classification

- The primal form of (soft-margin) LS-SVM classification is

minimize
$$\frac{1}{2}w^{\mathrm{T}}w + \lambda \sum_{k=1}^{n} \xi_{k}^{2}$$

subject to $y_{k}(w^{\mathrm{T}}x_{k} + b) = 1 - \xi_{k}$

for k = 1, ..., n, where $\lambda > 0$ is fixed. This convex quadratic optimization problem can be rewritten, with $\alpha \doteq (b, w^{T})^{T}$, as

$$g(\alpha) = \frac{1}{2} \| B\alpha \|^2 + \lambda \| \mathbb{1}_n - y \odot (X\alpha) \|^2,$$

where $\mathbb{1}_n \in \mathbb{R}^n$ is the all-one vector, " \odot " denotes the Hadamard (entrywise) product, $X \doteq [\tilde{x}_1, \ldots, \tilde{x}_n]^T$ with $\tilde{x}_k \doteq [1, x_k^T]^T$ and $B \doteq \text{diag}(0, 1, \ldots, 1)$, the role of matrix B is to remove bias b.

Experiment: Confidence Sets for LS-SVC

- This can be further reformulated to have the form $|| z - \Phi \alpha ||^2$,

$$\Phi = \begin{bmatrix} \sqrt{\lambda} (y \mathbb{1}_d^{\mathrm{T}}) \odot X \\ (1/\sqrt{2}) B \end{bmatrix}, \quad \text{and} \quad z = \begin{bmatrix} \sqrt{\lambda} \mathbb{1}_n \\ 0_d \end{bmatrix}.$$

- Then, under a symmetry assumption, SPS can be applied.

Distribution-Free UQ for Kernel Methods | 16

Confidence Sets for Kernel Ridge Regression

- The kernelized version of RR, Kernel Ridge Regression (KRR) is

$$g(f) \doteq \frac{1}{2} \sum_{i=1}^{n} (f(x_i) - y_i)^2 + \lambda \|f\|_{\mathcal{H}}^2$$

where f may come from an infinite dimensional RKHS.

- Using the representer theorem and the reproducing property,

$$g(\alpha) = \frac{1}{2} \| y - K\alpha \|^2 + \lambda \alpha^{\mathrm{T}} K\alpha$$

SPS Evaluation Function for Kernel Ridge Regression

$$Z_i(\alpha) \doteq \left\| \left(\mathsf{K}^2 + 2\,\lambda\,\mathsf{K}^{1/2} \right)^{-1/2} \left[\,\mathsf{K}\,\mathsf{G}_i\,(y - \mathsf{K}\alpha) + 2\,\lambda\,\mathsf{K}^{1/2}\alpha \,\right] \,\right\|^2$$

Experiment: SPS for Kernel Ridge Regression

B. Cs. Csáji & K. B. Kis

Distribution-Free UQ for Kernel Methods | 18

Confidence Sets for Support Vector Regression

– Criterion of Support Vector Regression, for c > 0 and $\bar{c} > 0$, is

$$g(f) \doteq \frac{1}{2} \| f \|_{\mathcal{H}}^2 + \frac{c}{n} \sum_{k=1}^n \max\{0, |f(x_k) - y_k| - \bar{\varepsilon}\}$$

 Using the representer theorem, Lagrangian duality and the Karush–Kuhn–Tucker (KKT) conditions, we arrive at the dual

$$g^{*}(\alpha,\beta) = y^{\mathrm{T}}(\alpha-\beta) - \frac{1}{2}(\alpha-\beta)^{\mathrm{T}}K(\alpha-\beta) - \bar{\varepsilon}(\alpha+\beta)^{\mathrm{T}}\mathbb{1}$$

subject to $\alpha, \beta \in [0, c/n]^n$ and $(\alpha - \beta)^{\perp} \mathbb{1} = 0$.

Evaluation Function for Support Vector Regression

$$Z_i(\alpha) \doteq \| G_i(y - K\alpha) - \bar{\varepsilon}\operatorname{sign}(\alpha) \|^2$$

Experiment: Confidence Regions for SVR

B. Cs. Csáji & K. B. Kis

Distribution-Free UQ for Kernel Methods | 20

Confidence Sets for Kernelized LASSO

- The kernelized version of LASSO leads to the objective,

$$g(f) \doteq \frac{1}{2} \| y - K \alpha \|^2 + \lambda \| \alpha \|_1.$$

Evaluation Function for Kernelized LASSO

$$Z_i(lpha) \doteq \parallel K G_i \left(K lpha - y
ight) + \lambda \operatorname{sign}(lpha) \parallel^2$$

Experiment: Consistency (n = 10, 20, 50, and 100)

B. Cs. Csáji & K. B. Kis

Distribution-Free UQ for Kernel Methods | 22

Conclusions

- A data-driven uncertainty quantification (UQ) approach was preseted for models constructed by kernel methods.
- UQ takes the form of confidence regions for ideal representations of the true function which we only observe via measurement noise.
- The core idea is to perturb the residuals in the gradient of the objective function with some distributionally invariant operations.
- The resulting sets have exact (user-chosen) coverage probabilities.
- The framework is distribution-free (unlike GP regression), only mild regularities are assumed about the noise (like symmetry).
- The method has non-asymptotic (finite sample) guarantees.
- Convex quadratic problems and symmetric noises \Rightarrow the regions are star convex and have ellipsoidal outer approximations.
- The ideas were demonstrated on LS-SVM, KRR, SVR & kLASSO.

Thank you for your attention!

🕆 www.sztaki.hu/~csaji 🛛 🖂 csaji@sztaki.hu