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Introduction

– Kernel methods are widely used in machine learning and related
fields (such as signal processing and system identification).

– Besides how to construct a models from empirical data, it is also
a fundamental issue how to quantify the uncertainty of the model.

– Standard solutions either use strong distributional assumptions
(e.g., Gaussian processes) or heavily rely on asymptotic results.

– Here, a new construction for non-asymptotic and distribution-free
confidence sets for models built by kernel methods are proposed.

– We target the ideal representation of the underlying true function.

– The constructed regions have exact coverage probabilities and
only require a mild regularity (e.g., symmetry or exchangeability).

– The quadratic case with symmetric noises has special importance.

– Several examples are discussed, such as support vector machines.
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Reproducing Kernel Hilbert Spaces

– A Hilbert space, H, of functions f : X → R, with inner product
⟨·, ·⟩H, is called a Reproducing Kernel Hilbert Space (RKHS), if
∀ z ∈ X , f ∈ H the point evaluation functional δz : f → f (z), is
bounded (i.e., ∃κ > 0 with |δz(f )| ≤ κ ∥f ∥H for all f ∈ H).

– Then, one can construct a kernel k : X × X → R, having the
reproducing property that is for all z ∈ X and f ∈ H, we have

⟨ k(·, z), f ⟩H = f (z),

which is ensured by the Riesz-Fréchet representation theorem.

– As a special case, the kernel satisfies k(z , s) = ⟨ k(·, z), k(·, s) ⟩H.
– A kernel is therefore a symmetric and positive-definite function.

– Conversely, by the Moore-Aronszajn theorem, for every symmetric
and positive definite function, there uniquely exists an RKHS.
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Examples of Kernels

Kernel k(x , y) Domain U C

Gaussian exp
(
−∥x−y∥22

σ

)
Rd ✓ ✓

Linear ⟨x , y⟩ Rd × ×

Polynomial (⟨x , y⟩+ c)p Rd × ×

Laplacian exp
(
−∥x−y∥1

σ

)
Rd ✓ ✓

Rat. quadratic exp(∥x − y∥22 + c2)−β Rd ✓ ✓

Exponential exp(σ⟨x , y⟩) compact × ✓

Poisson 1/(1− 2α cos(x − y) + α2) [0, 2π) ✓ ✓

Table: typical kernels; U means “universal” and C means “characteristic”
(where the hyper-parameters satisfy σ, β, c > 0, α ∈ (0, 1) and p ∈ N).
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Regression and Classification

– The data sample, Z, is a finite sequence of input-output data

(x1, y1), . . . , (xn, yn) ∈ X × R

where X ̸= ∅ and R are the input and output spaces, respectively.

– We set x
.
= (x1, . . . , xn)

T ∈ X n and y
.
= (y1, . . . , yn)

T ∈ Rn.

– We are searching for a model for this data in an RKHS containing
f : X → R functions. The kernel of the RKHS is k : X ×X → R.

– The Gram matrix of the kernel with respect to inputs {xi} is

[K ]i ,j
.
= k(xi , xj).

(a data-dependent symmetric and positive semi-definite matrix)

– A kernel is called strictly positive definite if its Gram matrix, K , is
(strictly) positive definite for all possible distinct inputs {xi}.
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Regularizated Optimization Criterion

Regularized Criterion

g(f ,Z) = L(x1, y1, f (x1), . . . , xn, yn, f (xn)) + Ω(f )

– The loss function, L, measures how well the model fits the data,
while the regularizer, Ω, controls other properties of the solution.

– Regularization can help in several issues, for example:

◦ To convert an ill-posed problem to a well-posed problem.

◦ To make an ill-conditioned approach better conditioned.

◦ To reduce over-fitting and thus to help the generalization.

◦ To force the sparsity of the solution.

◦ Or in general to control shape and smoothness.
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Representer Theorem

We are given a sample, Z, a positive-definite kernel k(·, ·), an
associated RKHS with a norm ∥ · ∥H induced by ⟨·, ·⟩H, and a class

F .
=

{
f
∣∣ f (z) = ∞∑

i=1

βik(z , zi ), βi ∈ R, zi ∈ X , ∥f ∥H < ∞
}
,

then, for any mon. increasing regularizer, Ω : [0,∞) → [0,∞), and
an arbitrary loss function L : (X × R2)n → R ∪ {∞}, the criterion

g(f ,Z)
.
= L

(
(x1, y1, f (x1)), . . . , (xn, yn, f (xn))

)
+Ω( ∥f ∥H )

has a minimizer admitting the following representation

fα(z) =
n∑

i=1

αik(z , xi ),

where α
.
= (α1, . . . , αn)

T ∈ Rn is a finite vector of coefficients.
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Ideal Representations

– Sample Z is generated by an underlying true function f∗

yi
.
= f∗(xi ) + εi ,

for i = 1, . . . , n, where {xi} inputs and {εi} are the noise terms.

– The vector of noises is denoted by ε
.
= (ε1, . . . , εn).

– In an RKHS, we can focus on, fα(z) =
∑n

i=1 αik(z , xi ) functions.

– Function fα ∈ F is called an ideal representation of f∗ w.r.t. Z, if

fα(xi ) = f∗(xi ), for all x1, . . . , xn

the corresponding ideal coefficients are denoted by α∗ ∈ Rn.

– Gram matrix is positive-definite ⇒ exactly one ideal represent.

– We aim at building confidence regions for ideal representations,
instead of the true function (which may not be in the RKHS).
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Distributional Invariance

– Our approach does not need strong distributional assumption on
the noises (such as Gaussianity). The needed property is:

An Rn-valued random vector ε is distributionally invariant w.r.t. a
compact group of transformations, (G, ◦), where “◦” denotes the
function composition and each G ∈ G maps Rn to itself, if for all
G ∈ G, vectors ε and G (ε) have the same distribution.

– Two arch-typical examples having this property are

(1) If {εi} are exchangeable (for example: i.i.d.), then we can
use the (finite) group of permutations on the noise vector.

(2) If {εi} independent and symmetric, then we can apply the
group consisting sign-changes for any subsets of the noises.
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Main Assumptions

A1 The kernel is strictly positive definite and {xi} are a.s. distinct.

A2 The input vector x and the noise vector ε are independent.

A3 The noises, {εi}, are distributionally invariant with respect to a
known group of transformations, (G, ◦).

A4 The gradient, or a subgradient, of the objective w.r.t. α exists
and it only depends on y through the residuals, i.e., there is ḡ ,

∇α g(fα,Z) = ḡ(x , α, ε̂(x , y , α)),

where the residuals are defined as ε̂(x , y , α)
.
= y − K α.

(A1 ⇒ the ideal representation is unique with prob. one; A2 ⇒ no
autoregression; A3 ⇒ ε can be perturbed; A4 holds in most cases.)
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Perturbed Gradients

– Let us define a reference “evaluation” function, Z0 : Rn → R, and
m− 1 perturbed “evaluation” functions, {Zi}, with Zi : Rn → R,

Z0(α)
.
= ∥Ψ(x) ḡ(x , α, ε̂(x , y , α)) ∥2,

Zi (α)
.
= ∥Ψ(x) ḡ(x , α,Gi (ε̂(x , y , α))) ∥2,

for i = 1, . . . ,m − 1, where m is a hyper-parameter, Ψ(x) is an
(optional, possibly input dependent) weighting matrix, and {Gi}
are (random) uniformly sampled i.i.d. transformations from G.

– If α = α∗ ⇒ Z0(α
∗)

d
= Zi (α

∗), for all i = 1, . . . ,m − 1 (“
d
=”

denotes equality in distribution; observe that ε̂(x , y , α∗) = ε).

– If α ̸= α∗, this distributional equivalence does not hold, and if
∥α− α∗∥ is large enough, Z0(α) will dominate {Zi (α)}m−1

i=1 .
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Confidence Regions

– The normalized rank of ∥Z0(α)∥2 in the ordering of {∥Zi (α)∥2} is

R(α)
.
=

1

m

[
1 +

m−1∑
i=1

I
(
∥Zi (α)∥2 ≺ ∥Z0(α)∥2

)]
,

where I(·) is an indicator function, and binary relation “≺” is the
standard “<” ordering with random tie-breaking (pre-generated).

– Given any p ∈ (0, 1) with p = 1− q/m, a confidence regions is

Confidence Region for the Ideal Coefficient Vector

Ap
.
=

{
α ∈ Rn : R(α ) ≤ 1− q

m

}
where 0 < q < m are user-chosen integers (hyper-parameters).
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Main Theoretical Result: Exact Coverage

Theorem: Under assumptions A1, A2, A3 and A4, the coverage
probability of Ap with respect to the ideal coefficient vector α∗ is

P
(
α∗ ∈ Ap

)
= p = 1− q

m
,

for any choice of the integer hyper-parameters, 0 < q < m.

– The coverage probabiltiy is exact (it is non-conservative), and
as m and q are user-chosen, probability p is under our control.

– The result is non-asymptotic, as it is valid for any finite sample.

– Furthermore, no particular distribution is assumed for the noises
affecting measurements, hence the ideas are distribution-free.

– The needed statistical assumptions are very mild, for example,
the noises can be non-stationary, heavy-tailed, and skewed.
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Quadratic Objectives and Symmetric Noises

– Assume the noises are independent and symmetric and the
objective is convex quadratic taking the (canonical) form

g (α)
.
= ∥ z − Φα ∥2

where z is the vector of outputs, and Φ is the regressor matrix.

Evaluation Function of Sign-Perturbed Sums (SPS)

Zi (α)
.
=

∥∥ (ΦTΦ)−
1/2 ΦTGi (z − Φα)

∥∥2
where Gi = diag(σi ,1, . . . , σi ,n), for i ̸= 0, where {σi ,j} are i.i.d.
Rademacher variables, they take +1 and −1 with probability 1/2.

– The SPS confidence regions are star convex with the least-squares
estimate as a center, and have ellipsoidal outer approximations.
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Least-Squares Support Vector Classification

– The primal form of (soft-margin) LS-SVM classification is

minimize
1

2
wTw + λ

n∑
k=1

ξ2k

subject to yk(w
Txk + b) = 1− ξk

for k = 1, . . . , n, where λ > 0 is fixed. This convex quadratic
optimization problem can be rewritten, with α

.
= (b,wT)T, as

g(α) =
1

2
∥Bα ∥2 + λ ∥1n − y ⊙ (Xα) ∥2,

where 1n ∈ Rn is the all-one vector, “⊙” denotes the Hadamard
(entrywise) product, X

.
= [ x̃1, . . . , x̃n ]

T with x̃k
.
= [ 1, xTk ]T and

B
.
= diag(0, 1, . . . , 1), the role of matrix B is to remove bias b.
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Experiment: Confidence Sets for LS-SVC

– This can be further reformulated to have the form ∥ z − Φα ∥2,

Φ =

[ √
λ (y1Td )⊙ X

(1/
√
2)B

]
, and z =

[ √
λ1n

0d

]
.

– Then, under a symmetry assumption, SPS can be applied.
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Confidence Sets for Kernel Ridge Regression

– The kernelized version of RR, Kernel Ridge Regression (KRR) is

g (f )
.
=

1

2

n∑
i=1

(f (xi )− yi )
2 + λ ∥f ∥2H

where f may come from an infinite dimensional RKHS.

– Using the representer theorem and the reproducing property,

g (α) =
1

2
∥ y − Kα ∥2 + λαTKα

SPS Evaluation Function for Kernel Ridge Regression

Zi (α)
.
=

∥∥∥ (K 2 + 2λK
1/2)−

1/2
[
KGi (y − Kα) + 2λK

1/2α
] ∥∥∥2
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Experiment: SPS for Kernel Ridge Regression
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Confidence Sets for Support Vector Regression

– Criterion of Support Vector Regression, for c > 0 and ε̄ > 0, is

g (f )
.
=

1

2
∥ f ∥2H +

c

n

n∑
k=1

max{ 0, |f (xk)− yk | − ε̄ }

– Using the representer theorem, Lagrangian duality and the
Karush–Kuhn–Tucker (KKT) conditions, we arrive at the dual

g∗(α, β) = yT(α− β) − 1

2
(α− β)TK (α− β)− ε̄ (α+ β)T1

subject to α, β ∈ [ 0, c/n ]n and (α− β)T1 = 0.

Evaluation Function for Support Vector Regression

Zi (α)
.
=

∥∥Gi (y − Kα)− ε̄ sign(α)
∥∥2
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Experiment: Confidence Regions for SVR
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Confidence Sets for Kernelized LASSO

– The kernelized version of LASSO leads to the objective,

g (f )
.
= 1/2 ∥ y − Kα ∥2 + λ ∥α ∥1.

Evaluation Function for Kernelized LASSO

Zi (α)
.
= ∥KGi (Kα− y) + λ sign(α) ∥2
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Experiment: Consistency (n = 10, 20, 50, and 100)
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Conclusions

– A data-driven uncertainty quantification (UQ) approach was
preseted for models constructed by kernel methods.

– UQ takes the form of confidence regions for ideal representations
of the true function which we only observe via measurement noise.

– The core idea is to perturb the residuals in the gradient of the
objective function with some distributionally invariant operations.

– The resulting sets have exact (user-chosen) coverage probabilities.

– The framework is distribution-free (unlike GP regression), only
mild regularities are assumed about the noise (like symmetry).

– The method has non-asymptotic (finite sample) guarantees.

– Convex quadratic problems and symmetric noises ⇒ the regions
are star convex and have ellipsoidal outer approximations.

– The ideas were demonstrated on LS-SVM, KRR, SVR & kLASSO.
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