Finite-Sample System Identification: An Overview and a New Correlation Method

Algo Carè 1, Balázs Csáji 2, Marco Campi 3, Erik Weyer 4

1 Centrum Wiskunde & Informatica (CWI), Amsterdam, Netherlands
2 Institute for Computer Science and Control (SZTAKI), Hungarian Academy of Sciences (MTA), Hungary
3 Department of Information Engineering (DII), University of Brescia, Italy
4 Department of Electrical and Electronic Engineering, University of Melbourne, Australia

56th IEEE CDC, Melbourne, Australia, December 12-15, 2017
Regularity Assumption

Assume: the (ideal) residuals have some known regularity for the best (for simplicity, the true) regression model (for example, they are jointly symmetric about zero)
Perturbed Residuals

original residuals

sign-perturbed residuals 1

sign-perturbed residuals 2
Perturbed Datasets

original dataset

perturbed dataset 1

perturbed dataset 2
Alternative Regression Models

original regression model (based on the original dataset)

alternative regression model 1 (based on perturbed dataset 1)

alternative regression model 2 (based on perturbed dataset 2)
Data Generation

Let us consider the following data generating system

System Structure

\[\mathbf{Y}_n \triangleq \mathcal{F}(\mathbf{U}_n, \mathbf{W}_n, \mathcal{I}) \]

where

- \(\mathcal{I} \) — initial conditions
- \(\mathbf{U}_n \triangleq (U_1, \ldots, U_n)^T \) — inputs
- \(\mathbf{W}_n \triangleq (W_1, \ldots, W_n)^T \) — noises
- \(\mathbf{Y}_n \triangleq (Y_1, \ldots, Y_n)^T \) — outputs
- \(\mathcal{F} \) — true data generating function
Point Estimation

Consider the *parametric estimation* problem of the system

\[Y_n \triangleq F_{\theta^*}(U_n, W_n, I) \]

parametrized with \(\theta^* \in \Theta \subseteq \mathbb{R}^d \) (true parameter)

Given: finite sample of data, \(Z \triangleq (U_n, Y_n, I) \)

We typically search for a model that best fit the data, that is

Point Estimate (Parametric)

\[\hat{\theta}_Z \triangleq \arg \min_{\theta \in \Theta} \mathcal{V}(\theta | Z) \]

where \(\mathcal{V} \) is a *criterion* function
Confidence Regions

In practice often some quality tag is needed to judge the estimate. Safety, stability, or quality requirements? ⇒ confidence regions

Confidence Region (Level μ)

$$\Pr(\theta^* \in \hat{\Theta}_{Z,\mu}) \geq \mu$$

for some $\mu \in (0, 1)$, where θ^* is the “true” parameter, $\hat{\Theta}_{Z,\mu} \subseteq \Theta$. Typically the level sets of the (scaled) limiting distribution is used.

Issues: only approximately correct for finite samples, requires the existence of a (known) limiting distribution.
Main Assumptions

Assumption 1

For any value of $\theta^* \in \Theta$, the relation $Y_n \triangleq F_{\theta^*}(U_n, W_n, I,)$ is noise invertible in the sense that, given the values of $Y_n, U_n, I,$ we can recover the noise W_n.

Assumption 2

The noise W_n is jointly symmetric about zero, i.e., (W_1, \ldots, W_n) has the same joint probability distribution as $(\sigma_1 W_1, \ldots, \sigma_n W_n)$ for all possible sign-sequences, $\sigma_i \in \{+1, -1\}, \ i = 1, \ldots, n.$
Residuals and Sign-Perturbations

Given a $\theta \in \Theta$ and dataset \mathcal{Z}, the estimated noise is $\hat{\mathbf{W}}_n(\theta)$.

Note that we have $\hat{\mathbf{W}}_n(\theta^*) = \mathbf{W}_n$ (Assumption 1).

Given vector $\mathbf{v}_n = (v_1, \ldots, v_n)$ and signs $\mathbf{s}_n = (\sigma_1, \ldots, \sigma_n) \in \{+1, -1\}^n$, we denote the sign-perturbed vector by

$$\mathbf{s}_n[\mathbf{v}_n] \triangleq (\sigma_1 v_1, \ldots, \sigma_n v_n).$$

Note that $\mathbf{W}_n \overset{d}{=} \mathbf{s}_n[\mathbf{W}_n]$, for all $\mathbf{s}_n \in \{+1, -1\}^n$ (Assumption 2) where $\overset{d}{=} “$ denotes equal in distribution.
Evaluation Functions

A core concept is the evaluation function (test statistic),

\[Z : \mathbb{R}^n \times \mathbb{R}^n \times \Theta \rightarrow \mathbb{R}, \]

to evaluate the parameter based on ideas discussed before. (Note that \(Z \) can also depend on the initial conditions.)

Using \(Z \) we define a reference and \(m - 1 \) sign-perturbed functions,

\[Z_0(\theta) \triangleq Z(U_n, \hat{W}_n(\theta), \theta), \]

\[Z_i(\theta) \triangleq Z(U_n, s_n^{(i)}[\hat{W}_n(\theta)], \theta), \]

for \(i = 1, \ldots, m - 1 \), where \(s_n^{(1)}, \ldots, s_n^{(m-1)} \) are \(m - 1 \) user-generated vectors containing i.i.d. symmetric random signs.
Evaluating Parameters

It can be shown that $Z_0(\theta^*), \ldots, Z_{m-1}(\theta^*)$ are conditionally i.i.d.

Consider the ordering $Z_0(\theta^*) < \cdots < Z_{m-1}(\theta^*)$,
where we apply random tie-breaking, if needed.

Then **All orderings are equally probable!**

We want to design Z to such that as θ gets “far away” from θ^*,

$$Z_0(\theta) < Z_i(\theta)$$

with “high probability” for all $i = 1, \ldots, m-1$; or

$$Z_i(\theta) < Z_0(\theta)$$

with “high probability” for all $i = 1, \ldots, m-1$.

Non-Asymptotic Confidence Regions

The rank of $Z_0(\theta)$ in the ascending ordering of $\{Z_i(\theta)\}_{i=0}^{m-1}$ is

$$R(\theta) = 1 + \sum_{i=1}^{m-1} I(Z_i(\theta) < Z_0(\theta)),$$

where $I(\cdot)$ is an indicator function.

Exact Confidence

The confidence region defined as

$$\hat{\Theta}_n \triangleq \left\{ \theta \in \mathbb{R}^d : h \leq R(\theta) \leq k \right\}$$

is such that $\mathbb{P}\{\theta^* \in \hat{\Theta}_n\} = (k - h + 1)/m$, where h, k and m are user-chosen integers (design parameters).
Typical constructions of the evaluation function Z are based on

- **Correlations**: we use the fact that, for the true parameter, the residuals (noises) are uncorrelated, also with the inputs. E.g.: LSCR (Leave-out Sign-dominant Correlation Regions)

- **Gradients**: based on the gradient (w.r.t. the parameter) of the criterion function of a given point estimate; we perturb the residuals in the gradient and scalarize it with a norm. E.g.: SPS (Sign-Perturbed Sums)

- **Models**: new models are estimated based on the alternative (perturbed) datasets and then they are compared to the original (unperturbed) estimate (bootstrap style approach). E.g.: DP (Data Perturbation)
A New Correlation Approach: Combining LSCR and SPS

What are the advantages and disadvantages of LSCR and SPS?

LSCR uses **correlations** (and subsampling).
It is a **flexible and easy** to implement algorithm.
It is **computationally light**, does not require perturbed datasets.
However, it is **conservative** for high dimensional parameters.

SPS uses **gradients** (and sign-perturbations).
It evaluates the errors in **all** parameters simultaneously (norm).
It always constructs confidence regions having **exact** confidence.
However, it needs **perturbed datasets**, it is computationally heavy.

Let us try to combine the advantages of these two approaches!
A New Correlation Approach: SPCR

New method: SPCR (Sign-Perturbed Correlation Regions).

For concreteness, let us consider an ARX\((n_a, n_b)\) model

\[
Y_t = a_1 Y_{t-1} + \cdots + a_{n_a} Y_{t-n_a} + b_1 U_{t-1} + \cdots + b_{t-n_b} U_{t-n_b} + W_t.
\]

Stacked Correlations

For a generic \(U'_n\) and \(W'_n\), we introduce the correlation vectors

\[
C_t(U'_n, W'_n) \triangleq (W'_t W'_{t-1}, \ldots, W'_t W'_{t-k}, W'_t U'_t, \ldots, W'_t U'_{t-l+1})^T,
\]

for \(t = 1, \ldots, n\), where \(k\) and \(l\) are user-chosen parameters.

(Typically \(k + l \geq n_a + n_b\), and we may need terms from \(\mathcal{I}\).)
A New Correlation Approach: SPCR

Evaluation Function for SPCR

\[Z(U'_n, W'_n, \theta) \triangleq \|Q^{-\frac{1}{2}}(U'_n, W'_n)\frac{1}{n} \sum_{t=1}^{n} C_t(U'_n, W'_n)\|^2, \]

where \(Q \) is a “scaling” matrix defined as

\[Q(U'_n, W'_n) \triangleq \frac{1}{n} \sum_{t=1}^{n} C_t(U'_n, W'_n)C_t^T(U'_n, W'_n). \]

which is assumed to be invertible, for convenience.
A New Correlation Approach: SPCR

Confidence Regions for SPCR

\[\hat{\Theta}_n \triangleq \{ \theta \in \mathbb{R}^{na+n_b} : R(\theta) \leq k \} . \]

And we have exact confidence for parameter vectors, as well

\[\mathbb{P}\{ \theta^* \in \hat{\Theta}_n \} = (k + 1)/m. \]

Note that SPCR is a class of methods where different constructions correspond to different choices of \((k, l)\).
Simulation Example for SPCR

Consider a bilinear system generated by

\[Y_t \triangleq a^* Y_{t-1} + b^* U_t + \frac{1}{2} U_t N_t + N_t, \]

for \(t = 1, \ldots, n \), with \(a^* = 0.7 \), \(b^* = 1 \), with zero initial conditions.

The input sequence \(\{ U_t \} \) is generated by \(U_t \triangleq 0.5 U_{t-1} + V_t \), with zero initial conditions, where \(\{ V_t \} \) is i.i.d. standard normal.

The noise sequence \(\{ N_t \} \) is i.i.d. Laplacian with zero mean and unit variance, independent of \(\{ U_t \} \).

Our model class is ARX(1, 1), that is

\[\hat{Y}_t(\theta) \triangleq a Y_{t-1} + b U_t. \]
Simulation Example for SPCR

Figure: 95% confidence regions built by SPCR with $k = 2$ and $l = 2$.

*True
- $n = 50$
- $n = 200$
- $n = 400$
Desirable Properties of Finite Sample Sys.Id. Methods

- **Inclusion of a point estimate**: the confidence region should be centered around a given point estimate (e.g., PEM, QML).
- **Consistency**: for any false parameter, \(\theta' \neq \theta^* \), the probability of \(\theta' \in \hat{\Theta}_n \) should decrease as the sample size, \(n \), increases.
- **Favorable topology**: region \(\hat{\Theta}_n \) should have good topological properties, e.g., it should be bounded, connected, star convex.
- **Weak computability**: deciding whether a candidate parameter value \(\theta \) belongs to \(\hat{\Theta}_n \) should be computationally easy.
- **Strong computability**: calculating a representation of \(\hat{\Theta}_n \) or an approximation of it should be computationally feasible.
Conclusions

• A general, unifying overview on finite-sample system identification (FSID) methods was provided.

• The core ideas behind building exact, non-asymptotic, quasi distribution-free confidence regions were highlighted.

• A new method, SPCR (Sign-Perturbed Correlation Regions) was suggested as the combination of LSCR and SPS.

• SPCR combines the computational advantages of LSCR with the exactness of SPS by using stacked correlation vectors.

• A numerical experiment on a bilinear system was presented.

• Finally, desirable properties of FSID methods were highlighted and discussed based on the LSCR, SPS and SPCR methods.
Thank you for your attention!

✉ balazs.csaji@sztaki.mta.hu