INTRODUCTION TO MARKOV DECISION PROCESSES

Balázs Csanád Csáji

Research Fellow, The University of Melbourne

Signals & Systems Colloquium, 29 April 2010

Department of Electrical and Electronic Engineering, The University of Melbourne

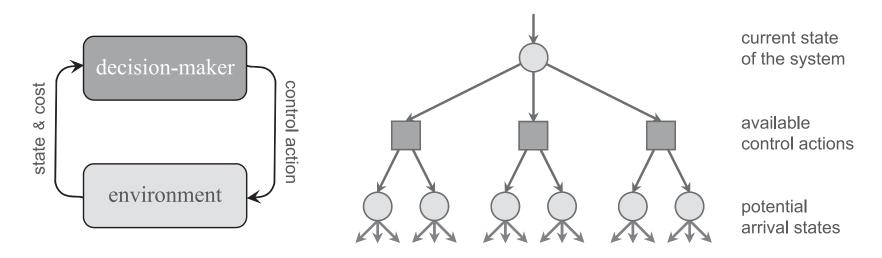
Overview

- PART I.Introduction(Motivations, Applications and Prerequisites)
- PART II. The Basic Problem (Policies, Value Functions and Optimality Equations)
- PART III. Solution Methods (Successive Approximations, Direct Policy Search, and Linear Programming)
- PART IV. Generalizations
 - (Unbounded Costs, Partially Observable Problems, and General Measurable Spaces)
- PART V. Summary and Literature

PART I. Introduction

Motivation: Reinforcement Learning

- Reinforcement learning (RL) is a computational approach to learn from the interaction with an environment based on feedbacks, e.g., rewards.
- An interpretation: consider an agent acting in an uncertain environment and receiving information on the actual states and immediate costs.
- The aim is to learn an efficient behavior (control policy), such that applying this strategy minimizes the expected costs in the long run.



Applications

Some applications of Markov decision processes:

- Optimal Stopping
- Routing
- Maintenance and Repair
- Dispatching & Scheduling
- Inventory Control
- Optimal Control of Queues
- Strategic Asset Pricing
- Dynamic Options
- Insurance Risk Management

- Robot Control
- Logic Games
- Communication Networks
- Dynamic Channel Allocation
- Power Grid Management
- Supply-Chain Management
- Stochastic Resource Allocation
- Sequential Clinical Trials
- PageRank Optimization

Reminder: Markov Chains

- Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space with a nondecreasing family of σ -algebras, called a filtration, $\mathcal{F}_0 \subseteq \mathcal{F}_1 \subseteq \cdots \subseteq \mathcal{F}$.
- Note that \mathcal{F}_t can be interpreted as the information available at time t.
- A stochastic sequence $X = (X_i, \mathcal{F}_i)_{i=0}^{\infty}$ is a Markov chain (w.r.t. \mathbb{P}) if

$$\mathbb{P}(X_i \in A \,|\, \mathcal{F}_j) = \mathbb{P}(X_i \in A \,|\, X_j),$$

for all $0 \le j \le i$ and $A \in \mathcal{B}(X)$ (\mathbb{P} -a.s.), where X is the state space of the process and $\mathcal{B}(.)$ denotes a σ -algebra.

- For example, $\mathbb{X} = \mathbb{R}$ and $\mathcal{B}(\mathbb{X})$ denotes the Borel measurable sets.
- For countable state spaces, for example $\mathbb{X} \subseteq \mathbb{Q}^d$, the σ -algebra $\mathcal{B}(\mathbb{X})$ will be assumed to be the set of all subsets of \mathbb{X} .

Countable State Spaces

- Henceforth we assume that \mathbb{X} is countable and $\mathcal{B}(\mathbb{X}) = \mathcal{P}(\mathbb{X})(=2^{\mathbb{X}})$.
- We say that $\lambda = (\lambda_x : x \in \mathbb{X})$ is a is distribution if $\lambda_x \ge 0$ for all x and

$$\sum_{x \in \mathbb{X}} \lambda_x = 1$$

- A (potentially infinite) matrix $P = (p_{xy} : x, y \in \mathbb{X})$ is stochastic if its each row $(p_{xy} : y \in \mathbb{X})$ is a distribution.
- A sequence of discrete random variables $(X_i)_{i=0}^{\infty}$ is a (homogeneous) Markov chain with initial distribution λ and transition matrix P if
 - X_0 has distribution λ ;
 - For all $i \ge 0$, conditional on $X_i = x$, X_{i+1} has distribution $(p_{xy} : y \in \mathbb{X})$ and is independent of X_0, \ldots, X_{i-1} .

Transition Probabilities

• We can easily extend the matrix multiplication to the general case:

$$(\lambda P)_y \triangleq \sum_{x \in \mathbb{X}} \lambda_x p_{xy}, \qquad (PQ)_{xz} \triangleq \sum_{y \in \mathbb{X}} p_{xy} q_{yz},$$

for all (potentially infinite) vector λ and matrices P, Q.

- The (generalized) identity matrix is denoted by I, where $I_{xy} = \delta_{xy}$.
- Matrix powers can be defined as usual, $P^0 \triangleq I$ and $P^{n+1} \triangleq P^n P$.
- If $(X_i)_{i=0}^{\infty}$ is a (discrete, homogeneous) Markov chain then

$$-\mathbb{P}(X_n = x) = (\lambda P^n)_x,$$

$$-\mathbb{P}(X_{m+n} = y \mid X_m = x) = (P^n)_{xy},$$

where λ is its initial distribution and P is its transition matrix.

PART II.

The Basic Model of Markov Decision Processes

Markov Decision Processes

A (homogeneous, discrete, observable) Markov decision process (MDP) is a stochastic system characterized by a 5-tuple $\mathcal{M} = \langle X, A, \mathcal{A}, p, g \rangle$, where:

- \mathbb{X} is a countable set of discrete states,
- $\bullet~\mathbb{A}$ is a countable set of control actions,
- $\mathcal{A} : \mathbb{X} \to \mathcal{P}(\mathbb{A})$ is an action constraint function, $\mathcal{A}(x)$ denotes the finite set of allowed actions in state x,
- $p: \mathbb{X} \times \mathbb{A} \to \Delta(\mathbb{X})$ is the transition function, p(y | x, a) denotes the probability of arriving at state y after taking action $a \in \mathcal{A}(x)$ in a state x,
- $g: \mathbb{X} \times \mathbb{A} \to \mathbb{R}$ is an immediate cost (or reward) function.

Note that $\Delta(\mathbb{X})$ is the set of all probability distributions on \mathbb{X} .

Control Policies

The policy defines which action to take depending on the history:

$$\pi_n: \mathbb{X} \times (\mathbb{A} \times \mathbb{X})^n \to \Delta(\mathbb{A}).$$

Unless indicated otherwise, we consider stationary, Markov policies:

- A deterministic (stationary, Markov) policy is $\pi : \mathbb{X} \to \mathbb{A}$.
- A randomized (stationary, Markov) policy is $\pi : \mathbb{X} \to \Delta(\mathbb{A})$.

Each policy induces a (stochastic) transition matrix on the state space:

$$(P_{\pi})_{xy} \triangleq \sum_{a \in \mathcal{A}(x)} p(y \mid x, a) \pi(x, a).$$

The initial distribution of the states $\lambda \in \Delta(X)$, the transition probabilities p, together with a policy π define a homogeneous Markov chain on X.

Performance Measures: Total Cost

- We aim at finding a policy that minimizes the costs in the long run.
- A common performance measures is the expected discounted cost.
- In this case, the value function of a policy $V^{\pi}: \mathbb{X} \to \mathbb{R}$ is defined as

$$V^{\pi}(x) \triangleq \mathbb{E}_{\pi}\left[\sum_{n=0}^{\infty} \beta^{n} g(X_{n}, A_{n}) \mid X_{0} = x\right],$$

where $\beta \in [0, 1)$ is a discount factor and A_n, X_n are random variables with $A_n \sim \pi(X_n)$ and $X_{n+1} \sim p(X_n, A_n)$ ("~" = "has distribution").

- Function V^{π} is well-defined (and finite) if, e.g., the immediate-costs are bounded: for all $x \in \mathbb{X}$ and $a \in \mathcal{A}(x)$, we have $|g(x, a)| \leq C$.
- In this latter case, for all state x, we have $|V^{\pi}(x)| \leq C/(1-\beta)$.

Performance Measures: Ergodic Cost

• An alternative performance measure is the expected ergodic cost; in this case, the value function of a policy $W^{\pi} : X \to \mathbb{R}$ is defined as

$$W^{\pi}(x) \triangleq \limsup_{k \to \infty} \frac{1}{k} \mathbb{E}_{\pi} \left[\sum_{n=0}^{k-1} g(X_n, A_n) \ \middle| \ X_0 = x \right].$$

where, as previously, A_n, X_n are random variables representing the state and action at time n, with $A_n \sim \pi(X_n)$ and $X_{n+1} \sim p(X_n, A_n)$.

- $\bullet\,$ If the state space $\mathbb X$ is finite or the costs are bounded, W is finite.
- If \mathbb{X} is infinite, an optimal stationary Markov policy may not exist.
- In many applications the average cost is independent of the initial state, namely, $W^{\pi}(x)$ is constant (e.g., for finite, irreducible chains).

Optimal Solutions

- In general, we search for a solution that has minimal cost over all polices, with respect to a given performance measure $\mu(x, \pi)$.
- For example, $\mu(x,\pi) = V^{\pi}(x)$ or $\mu(x,\pi) = W^{\pi}(x)$.
- The optimal value function is defined as

$$\mu^*(x) \triangleq \inf_{\pi \in \Pi} \mu(x, \pi),$$

for all state $x \in X$, where Π denotes the set of all admissible policies.

- For $\varepsilon \ge 0$, a policy is called ε -optimal, if $\mu(x, \pi) \le \mu^*(x) + \varepsilon$, for all state $x \in \mathbb{X}$. A 0-optimal policy is called optimal.
- Henceforth, we apply the discounted cost criterion, $\mu(x,\pi) = V^{\pi}(x)$.

Optimality Operators

- Let $\mathcal{B}(X, \mathbb{R})$ denote the set of all bounded real-valued functions on X with bound $\|g\|/(1-\beta)$. It contains the value functions of all policies.
- For a function $f \in \mathcal{B}(\mathbb{X}, \mathbb{R})$ we consider two cost operators:

$$(P_a f)(x) \triangleq \mathbb{E} \left[f(X_1) \mid X_0 = x, A_0 = a \right],$$
$$(T_a f)(x) \triangleq g(x, a) + \beta(P_a f)(x).$$

• The optimality operators are defined for all state $x \in X$ by:

$$(Pf)(x) \triangleq \inf_{a \in \mathcal{A}(x)} (P_a f)(x),$$
$$(Tf)(x) \triangleq \inf_{a \in \mathcal{A}(x)} (T_a f)(x).$$

• Operators T_a and T are often called the Bellman operators.

Optimality Equations

• The Bellman optimality equation for the discounted cost problem is:

$$V(x) = (T V)(x),$$

for all state $x \in \mathbb{X}$. Its solution V^* is the optimal value function.

• It can be proven that T is a contraction with Lipschitz constant β :

$$||Tf_1 - Tf_2|| \le \beta ||f_1 - f_2||.$$

for all $f_1, f_2 :\in \mathcal{B}(\mathbb{X}, \mathbb{R})$, where $\|\cdot\|$ denotes supremum norm.

- Using the Banach fixed point theorem we get that T has a unique fixed point. Thus, all optimal policies share the same value function.
- Moreover, T is monotone, namely, $f_1 \leq f_2 \Rightarrow Tf_1 \leq Tf_2$.

Greedy Policies

• For countable state spaces the Bellman operator takes the form:

$$(TV)(x) = \min_{a \in \mathcal{A}(x)} \left[g(x,a) + \beta \sum_{y \in \mathbb{X}} p(y \mid x, a) V(y) \right].$$

• Given a value function V, the greedy policy (w.r.t. V) is defined as

$$\pi(x) \in \underset{a \in \mathcal{A}(x)}{\operatorname{arg\,min}} \left[g(x,a) + \beta \sum_{y \in \mathbb{X}} p(y \mid x, a) V(y) \right].$$

• If $V \in \mathcal{B}(\mathbb{X}, \mathbb{R})$ and π is a greedy policy with respect to V, then

$$||V^* - V^{\pi}|| \le \frac{2\beta}{1-\beta} ||V - V^*||,$$

• Thus, good approximations to V^* directly lead to efficient policies.

Part III.

Solution Methods

Three Ways

The three classical ways of solving MDPs are:

- 1. Successive approximations: iteratively computing a value function that approximates V^* . For example, value iteration and Q-learning.
- 2. Direct policy search: searching for an optimal control policy in the space of policies. For example, policy iteration and policy gradient methods.
- 3. Linear programming: finding the optimal value function as a solution of a static optimization problem with linear objective function and constraints.

TYPE 1 SOLUTIONS

Successive Approximations (Value Function Based Methods)

Value Iteration

 $\bullet\,$ Since T is a contraction, the recursive sequence

$$V_{n+1} = T V_n$$

converges to V^* for any initial value function $V_0 \in \mathcal{B}(\mathbb{X}, \mathbb{R})$.

- This method is called value iteration. Its main problems are:
 - 1. If \mathbb{X} is very large $\Rightarrow TV$ cannot be computed for all states at once.
 - 2. The transition probabilities $p(y \mid x, a)$ are often not known in advance.
 - 3. If \mathbb{X} is very large $\Rightarrow V$ cannot be directly stored in the memory.
- A possible solution to problem 1 is asynchronous value iteration: $\widetilde{V}_{n+1}(x) = (T \widetilde{V}_n)(x)$ is updated only for $x \in X_{n+1} \subseteq X$.
- V_n converges to V^* if each state is updated infinite many times.

Q-learning

- Simulation based methods can handle unknown transition probabilities.
- The action-value function of a policy $Q^{\pi}: \mathbb{X} \times \mathbb{A} \to \mathbb{R}$ is

$$Q^{\pi}(x,a) = \mathbb{E}\left[\sum_{t=0}^{\infty} \beta^{t} g(X_{t}, A_{t}) \mid X_{0} = x, A_{0} = a\right].$$

- The optimal action-value function, which uniquely exists, is Q^* .
- The one-step version of Watkins' Q-learning rule is as follows.

$$Q_{n+1}(x,a) = (1 - \gamma_n(x,a))Q_n(x,a) + \gamma_n(x,a)\left(g(x,a) + \beta \min_{B \in \mathcal{A}(Y)} Q_n(Y,B)\right),$$

where $\gamma_n \in (0, 1)$ is the learning rate, e.g., $\gamma_n(x, a) = 1/n$, and Y is a random variable generated from $(x, a) \in \mathbb{X} \times \mathbb{A}$ by simulation.

Q-learning

- Q-learning is off-policy: it can work independently of the applied policy.
- Assume that the learning rates satisfy for all state x and action a (w.p.1):

$$\sum_{n=0}^{\infty} \gamma_t(x, a) = \infty, \qquad \sum_{n=0}^{\infty} \gamma_t^2(x, a) < \infty.$$

- Under this assumption and if all state-action pairs are continue to update, the sequence Q_t converges to Q^* almost surely for all Q_0 .
- Policy π is called soft if $\forall x \in \mathbb{X} : \forall a \in \mathcal{A}(x) : \pi(x, a) > 0$, e.g.,

$$\pi_n(x,a) \triangleq \frac{\exp(-Q_n(x,a)/\tau)}{\sum_{b \in \mathcal{A}(x)} \exp(-Q_n(x,b)/\tau)},$$

where $\tau > 0$ is the Boltzmann temperature. It is a semi-greedy policy.

Stochastic Iterative Algorithms

• Many learning and optimization methods can be written in a general form as a stochastic iterative algorithm. More precisely, for all $z \in \mathcal{Z}$ as

 $f_{t+1}(z) = (1 - \gamma_t(z))f_t(z) + \gamma_t(z)((Kf_t)(z) + W_t(z)),$

where f_t is a (generalized) value function, operator K acts on value functions, γ_t denotes random stepsizes and W_t is a noise parameter.

• Approximate dynamic programming methods often take the form

$$\Phi(r_{t+1}) = \prod \left((1 - \gamma_t) \Phi(r_t) + \gamma_t (K_t(\Phi(r_t)) + W_t) \right),$$

where $r_t \in \Theta$ is a parameter, Θ is the parameter space, e.g., $\Theta \subseteq \mathbb{R}^d$, $\Phi : \Theta \to \mathcal{F}$ is an approximation function where $\mathcal{F} \subseteq \mathcal{V}$ is a Hilbert space of functions. Function $\Pi : \mathcal{V} \to \mathcal{F}$ is a projection mapping.

TYPE 2 SOLUTIONS

Direct Policy Search

Policy Iteration

- Let π_1 be a policy with value function V^{π_1} . Let π_2 be the greedy policy w.r.t V^{π_1} , then $V^{\pi_2} \leq V^{\pi_1}$ and $V^{\pi_2} = V^{\pi_1} \Rightarrow$ they are both optimal.
- The method of policy iteration works by iteratively evaluating the policy then improving it by the greedy policy with respect to the evaluation.

Initialize π₀ arbitrarily and set the iteration counter, n := 0.
 Repeat (iterative evaluation and improvement)
 Evaluate policy π_n by computing its value function V^{π_n}.
 V^{π_n} is the solution of the linear system (I - β P_{π_n}) x = g_{π_n}.
 Improve the policy by setting π_{n+1} to the greedy policy w.r.t. V^{π_n}.
 Increase the iteration counter, n := n + 1.
 Until π_n = π_{n-1} (until no more improvements are possible)

• If X is finite, it terminates in finite steps with an optimal policy.

Policy Evaluation

- Simulation based methods, e.g., temporal difference learning, can evaluate a policy without knowledge of the transition probabilities.
- The update rule of TD(0) is defined as

$$V_{n+1}(x_n) = V_n(x_n) + \gamma_n(x_n) \Big(g(x_n, a_n) + \beta V_n(x_{n+1}) - V_n(x_n) \Big),$$

where the trajectory $x_0, a_0, x_1, a_1, \ldots$ is generated by Monte Carlo simulation and $\gamma_n(\cdot)$ denote the learning rate.

- Assuming the usual properties about $\gamma_n(\cdot)$ and every state is visited infinitely often, V_n converges to V^{π} (w.p.1) starting from $V_0 \equiv 0$.
- The optimistic policy iteration with TD(0) converges to V^* (w.p.1).

Policy Gradient

• Assuming that the policy π is parametrized by $\theta \in \mathbb{R}^d$: $a \sim \pi_{\theta}(x, a)$, the policy gradient method with learning rate γ_n (with $V(\theta) \triangleq V^{\pi_{\theta}}$)

$$\theta_{n+1} = \theta_n - \gamma_n \nabla_\theta V(\theta)|_{\theta = \theta_n}.$$

- If the gradient estimator is unbiased and $\sum_n \gamma_n = \infty$, $\sum_n \gamma_n^2 < \infty$, the convergence to a local minimum can be guaranteed.
- In order to estimate the gradient, θ can be perturbed $\hat{\theta}_i = \theta_n + \delta \theta_i$.
- In this case, the gradient can be determined by linear regression:

$$\nabla_{\theta} V(\theta)|_{\theta=\theta_n} \approx (\Delta \Theta^{\mathrm{T}} \Delta \Theta)^{-1} \Delta \Theta^{\mathrm{T}} \Delta J,$$

with $\Delta \Theta \triangleq (\delta \theta_1, \dots, \delta \theta_k)^{\mathrm{T}}$ and $\delta J_i \triangleq J(\hat{\theta}_i) - J(\theta_n)$ rollout returns form $\Delta J \triangleq (\delta J_1, \dots, \delta J_k)^{\mathrm{T}}$, where k is the sample size.

Policy Gradient

- The advantages of policy gradient methods are:
 - They allow incorporation of domain knowledge in the parametrization.
 - Often significantly fewer parameters are enough to represent the optimal policy than the corresponding value function.
 - They are guaranteed to converge while successive approximation methods with function approximation often does not.
 - They can handle continuous state and action spaces, as well.
- The disadvantages of policy gradient methods are:
 - They only converge to a local optima, not to a global one.
 - They are difficult to use in off-policy settings.
 - The convergence rate is often slow in discrete problems.

TYPE 3 SOLUTIONS

Linear Programming

Linear Programming

- We know that the optimal value function satisfies $T V^* = V^*$, it is monotone, $V_1 \leq V_2 \Rightarrow T V_1 \leq T V_2$, and $T^n V \to V^*$ as $n \to \infty$.
- Therefore, V^* is the largest vector satisfying $TV \leq V$.
- The optimal value function, V^* , solves the following linear program (LP):

$$\begin{array}{ll} \text{maximize} & \sum\limits_{x \in \mathbb{X}} \lambda_x \\ \text{subject to} & \lambda_x \, \leq \, g(x,a) + \beta \sum\limits_{y \in \mathbb{X}} \, p(y \,|\, x,a) \, \lambda_y \end{array}$$

for all state x and action $a \in \mathcal{A}(x)$. If its solution is λ^* , then $\lambda^* = V^*$.

If X is finite, it can be solved efficiently by, e.g., interior point methods.
 In case of infinite X, it can be often approximated by a finite program.

Computational Complexity

- Assume that the MDP is finite, particularly |X| = n and |A| = m.
- It is equivalent with an LP with n variables and O(nm) constraints.
- Thus, it can be solved in polynomial time, assuming the Turing model.
- Reducing to an MDP is often useful in combinatorial optimization, if we want to show the polynomial computability of a class of problems.
- If the discount factor, β , is fixed, value iteration and policy iteration also runs in polynomial time. However, value iteration is not polynomial in β .
- It is not known whether MDPs can be solved in strongly polynomial time. (Naturally, it is also not known whether LPs can be solved this way.)

PART IV. Generalizations

Potential Criticisms

- Some possible questions about the presented paradigm:
 - 1. Isn't the Markov assumption too restrictive?
 - 2. Can this methodology deal with delayed costs (or rewards)?
 - 3. What if the immediate costs are not bounded?
 - 4. Can this theory be extended to system that are **not fully observed**?
 - 5. What can we do if the state and action spaces are uncountable?
- Regarding 1: note that Semi-MDPs can be reduced to MDPs.
- Regarding 2: delayed costs do not introduce change to the theory.
- We are going to investigate 3, 4 and 5 now.

Unbounded Costs

- So far we have assumed that the costs are bounded: $||g|| \leq C$.
- A generalization: it is enough to assume that for all state x there is a number C_x and a constant k such that for all policy π , we have

$$\mathbb{E}_{\pi}[|g(X_{n-1}, A_{n-1})| | X_0 = x] \le C_x n^k.$$

• Under the condition above, the value function of policy π satisfy

$$\mathbb{E}_{\pi}\left[\sum_{n=0}^{\infty}\beta^{n}g(X_{n},A_{n}) \mid X_{0}=x\right] \leq C_{x}\sum_{n=0}^{\infty}\beta^{n}(n+1)^{k} < \infty,$$

therefore, the value function V^{π} remains well-defined (and finite).

• Alternatively, for most of the theory it is enough if we assume that g is bounded (only) from below: $g(x, a) \ge C$ for all state x and action a.

Partial Observability

- A partially observable Markov decision process (POMDP) is an MDP where the states cannot be observed directly.
- For POMDPs the definition of MDPs is extended with an observation set \mathbb{O} and an observation probability function: $q : \mathbb{X} \times \mathbb{A} \to \Delta(\mathbb{O})$.
- $q(z \mid x, a)$ is the probability of observing z if we take action a in state x.
- The action constraint function takes the form: $\mathcal{A} : \mathbb{O} \to \mathcal{P}(\mathbb{A})$.
- The policies also depend on the observations instead states, e.g., a randomized Markov policy takes the form of $\pi : \mathbb{O} \to \Delta(\mathbb{A})$.
- In general, policies should depend on the whole history to be optimal.

Belief States

- Belief states are probability distributions over the states, $\mathbb{B} \triangleq \Delta(\mathbb{X})$. They can be interpreted as the agent's ideas about the current state.
- Given a belief state b, an action a and an observation z, the new belief state $\tau(b, a, z)$ can be computed by Bayes rule:

$$\tau(b, a, z)(y) = \frac{\sum_{x \in \mathbb{X}} p(z, y \mid x, a) b(x)}{p(z \mid b, a)},$$

where $p(z, y \mid x, a) \triangleq q(z \mid y, a)p(y \mid x, a)$ and $p(z \mid b, a) \triangleq \sum p(z, y \mid x, a)b(x).$

$$x,y \in \mathbb{X}$$

• They are sufficient statistics: an optimal policy can found based on them.

Belief State MDPs

- A POMDP can be transformed into a fully observable MDP.
- The new MDP is called the belief state MDP. Its state space is \mathbb{B} , the action space remains \mathbb{A} and the transition probabilities are:

$$p(b_2 \mid b_1, a) = \begin{cases} p(z \mid b_1, a) & \text{if } b_2 = \tau(b_1, a, z) \text{ for some } z \\ 0 & \text{otherwise} \end{cases}$$

The new immediate cost function for all $b \in \mathbb{B}$, $a \in \mathbb{A}$ is given by

$$g(b,a) = \sum_{x \in \mathbb{X}} b(x) g(x,a),$$

consequently, the optimal value function of the belief state MDP is

$$\widetilde{V}^*(b) = \min_{a \in \mathcal{A}(b)} \left[g(b,a) + \beta \sum_{z \in \mathbb{O}} p(z \mid b,a) \, \widetilde{V}^*(\tau(b,a,z)) \right].$$

General Measurable Spaces

In case the state X or the action space A is non-discrete, we need:

- The state space $\mathbb X$ is measurable space endowed with a σ -field $\mathcal X$.
- The action space \mathbb{A} is measurable space endowed with a σ -field \mathcal{A} .
- For all state $x \in \mathbb{X}$, the set of allowed actions $\mathcal{A}(x)$ is measurable.
- The cost function g is a measurable function on $(\mathbb{X} \times \mathbb{A}, \mathcal{X} \times \mathcal{A})$.
- $p(\cdot | \cdot)$ is a transition probability from $(X \times A, X \times A)$ to (X, X):
 - For all $x, a: p(\cdot \mid x, a)$ is a probability measure on $(\mathbb{X}, \mathcal{X})$ and,
 - For all $E: p(E \mid \cdot)$ is a measurable function on $(\mathbb{X} \times \mathbb{A}, \mathcal{X} \times \mathcal{A})$.

For discrete MDPs, these assumptions always hold, since in that case $\mathcal{X} \triangleq \mathcal{P}(\mathbb{X}) (= 2^{\mathbb{X}})$ and $\mathcal{A} \triangleq \mathcal{P}(\mathbb{A}) (= 2^{\mathbb{A}})$.

Part V.

Summary and Literature

Summary

- Markov decision processes are controlled Markov chains together with an immediate-cost function and an optimization criterion.
- They have a large number of practical and theoretical applications.
- The basic concepts are: policy, value function and optimality equations.
- The three classical types of solution methods are:
 - 1. Successive Approximations (e.g., value iteration, Q-learning)
 - 2. Direct Policy Search (e.g., policy iteration, policy gradient)
 - 3. Linear Programming (e.g., interior point, ellipsoid or simplex methods)
- The theory can handle semi-Markov and partially observable problems and can be generalized to general measurable state and action spaces.

Recommended Literature

- Puterman M. L.: Markov Decision Processes, Wiley-Interscience, 1994
- Bertsekas D. P. & Tsitsiklis J. N.: Neuro-Dynamic Programming, Athena Scientific, Belmont, MA, 1996
- Sutton, R. S. & Barto, A. G.: Reinforcement Learning: An Introduction, MIT Press, Cambridge, MA, 1998
- Feinberg, A. E. & Shwartz, A. (eds.): Handbook of Markov Decision
 Processes, Kluwer Academic Publishers, 2002
- Bertsekas D. P.: Dynamic Programming and Optimal Control, 3rd edition, Vol. I. & II., Athena Scientific, Belmont, MA, 2005 & 2007

Introduction to Markov Decision Processes

Thank you for your attention!

bcsaji@unimelb.edu.au