Asymptotic Analysis of the LMS Algorithm with Momentum

László Gerencsér1 \hspace{1em} Balázs Csanád Csáji1 \hspace{1em} Sotirios Sabanis2

1Institute for Computer Science and Control (SZTAKI), Hungarian Academy of Sciences (MTA), Hungary
2School of Mathematics, University of Edinburgh, UK, and Alan Turing Institute, London, UK

57th IEEE CDC, Miami Beach, Florida, December 18, 2018
Introduction

- Stochastic gradient descent (SGD) methods are popular stochastic approximation (SA) algorithms applied in a wide variety of fields.
- Here, we focus on the special case of least mean square (LMS).
- Polyak’s momentum is an acceleration technique for gradient methods which has several advantages for deterministic problems.
- K. Yuan, B. Ying and A. H. Sayed (2016) argued that in the stochastic case it is “equivalent” to standard SGD, assuming fixed gains, strongly convex functions and martingale difference noises.
- For LMS, they assumed independent noises to ensure this.
- Here, we provide a significantly simpler asymptotic analysis of LMS with momentum for stationary, ergodic and mixing signals.
- We present weak convergence results and explore the trade-off between the rate of convergence and the asymptotic covariance.
Stochastic Approximation with Fixed Gain

Stochastic Approximation (SA) with Fixed Gain

\[\theta_{n+1} = \theta_n + \mu \cdot H(\theta_n, X_{n+1}) \]

- \(\theta_n \in \mathbb{R}^d \) is the estimate at time \(n \).
- \(X_n \in \mathbb{R}^k \) is the new data available at time \(n \).
- \(\mu \in [0, \infty) \) is the fixed gain or step-size.
- \(H : \mathbb{R}^d \times \mathbb{R}^k \rightarrow \mathbb{R}^d \) is the update operator.

(SA algorithms are typically applied to find roots, fixed points or extrema of functions we only observe at given points with noise.)
Stochastic Gradient Descent

– We want to minimize an unknown function, $f : \mathbb{R}^d \rightarrow \mathbb{R}$, based only on noisy queries about its gradient, ∇f, at selected points.

Stochastic Gradient Descent (SGD)

$$\theta_{n+1} = \theta_n + \mu (-\nabla \theta f(\theta_n) + \epsilon_n)$$

– Polyak’s heavy-ball or momentum method is defined as

SGD with Momentum Acceleration

$$\theta_{n+1} = \theta_n + \mu (-\nabla \theta f(\theta_n) + \epsilon_n) + \gamma (\theta_n - \theta_{n-1})$$

– The added term acts both as a smoother and an accelerator.
 (The extra momentum dampens oscillations and helps us getting through narrow valleys, small humps and local minima.)
Mean-Square Optimal Linear Filter

- \([C0]\) Assume we observe a (strictly) stationary and ergodic stochastic process consisting input-output pairs \(\{(x_t, y_t)\}\), where regressor (input) \(x_t\) is \(\mathbb{R}^d\)-valued, while output \(y_t\) is \(\mathbb{R}\)-valued.

- We want to find the mean-square optimal linear filter coefficients

\[
\theta^* \doteq \arg\min_{\theta \in \mathbb{R}^d} \mathbb{E}\left[\frac{1}{2} (y_n - x_n^T \theta)^2 \right]
\]

- Using \(R_* \doteq \mathbb{E}[x_n x_n^T]\) and \(b \doteq \mathbb{E}[x_n y_n]\), the optimal solution is

Wiener-Hopf Equation

\[
R_* \theta^* = b \quad \implies \quad \theta^* = R_*^{-1} b
\]

- \([C1]\) Assume that \(R_*\) is non-singular, thus, \(\theta^*\) is uniquely defined.
Least Mean Square

- The least mean square (LMS) algorithm is an SGD method

Least Mean Square (LMS)

\[
\theta_{n+1} = \theta_n + \mu x_{n+1} (y_{n+1} - x_{n+1}^T \theta_n)
\]

with \(\mu > 0 \) and some constant (non-random) initial condition \(\theta_0 \).

- Introducing the observation and (coefficient) estimation errors as

\[
v_n = y_n - x_n^T \theta^* \quad \text{and} \quad \Delta_n = \theta_n - \theta^*
\]

the estimation error process, \(\{\Delta_n\} \), follows the dynamics

\[
\Delta_{n+1} = \Delta_n - \mu x_{n+1} x_{n+1}^T \Delta_n + \mu x_{n+1} v_{n+1}
\]

with \(\Delta_0 = \theta_0 - \theta^* \). Note that \(\mathbb{E} [x_n v_n] = 0 \) for all \(n \geq 0 \).
The Associated ODE

- A standard tool for the analysis of SA methods is the associated ordinary differential equation (ODE). In the LMS case (for $t \geq 0$)

\[
\frac{d}{dt} \bar{\theta}_t = h(\bar{\theta}(t)) = b - R^* \bar{\theta}_t \quad \text{with} \quad \bar{\theta}_0 \doteq \theta_0
\]

where $h(\theta) \doteq \mathbb{E} \left[x_{n+1}(y_{n+1} - x_{n+1}^T \theta) \right]$ is the mean update for θ.

- A piecewise constant extension of $\{\theta_n\}$ is defined as $\theta^c_t \doteq \theta_{[t]}$, (note that here $[t]$ denotes the integer part of t).

- LMS is modified by taking a truncation domain D, where D is the interior of a compact set; then we apply the stopping time

\[
\tau \doteq \inf \{ t : \theta^c_t \notin D \}.
\]

- [C2] We assume that the truncation domain is such that the solution of the ODE defined above does not leave D.

The Error of the ODE

– Let us define the following error processes for the mean ODE

\[\tilde{\theta}_n \overset{\dagger}{=} \theta_n - \bar{\theta}_n \quad \text{and} \quad \tilde{\theta}_t^c \overset{\dagger}{=} \theta_t^c - \bar{\theta}_t \]

– The normalized and time-scaled version of the ODE error is

\[V_t(\mu) \overset{\dagger}{=} \mu^{-1/2} \tilde{\theta}_{(t^\wedge T)/\mu} = \mu^{-1/2} \tilde{\theta}_{(t^\wedge T)/\mu}^c \]

– We will also need the asymptotic covariance matrices of the empirical means of the centered correction terms, given by

\[S(\theta) \overset{\dagger}{=} \sum_{k=-\infty}^{+\infty} \mathbb{E} \left[(H_k(\theta) - h(\theta))(H_0(\theta) - h(\theta))^T \right] \]

where \(H_n(\theta) \overset{\dagger}{=} x_n(y_n - x_n^T \theta) \), which series converges, for example, under various mixing conditions (this will be ensured by \([C3]\)).
Weak Convergence for LMS

– [C3] We assume that the process defined by

\[L_t(\mu) \triangleq \sum_{n=0}^{[t/\mu]-1} (H_n(\bar{\theta}_\mu n) - h(\bar{\theta}_\mu n)) \sqrt{\mu} \]

converges weakly, as \(\mu \to 0 \), to a time-inhomogeneous zero-mean Brownian motion \(\{L_t\} \) with local covariances \(\{S(\bar{\theta}_t)\} \).

Theorem 1: Weak Convergence for LMS

Under conditions C0, C1, C2 and C3, process \(\{V_t(\mu)\} \) converges weakly, as \(\mu \to 0 \), to a process \(\{Z_t\} \) satisfying the following linear stochastic differential equation (SDE), for \(t \geq 0 \), with \(Z_0 = 0 \),

\[dZ_t = -R^* Z_t \, dt + S^{1/2}(\bar{\theta}_t) \, dW_t \]

where \(\{W_t\} \) is a standard Brownian motion in \(\mathbb{R}^d \).
Momentum LMS

LMS with Momentum Acceleration

\[\theta_{n+1} = \theta_n + \mu x_{n+1} (y_{n+1} - x_{n+1}^T \theta_n) + \gamma (\theta_n - \theta_{n-1}) \]

with \(\mu > 0, 1 > \gamma > 0 \), and some non-random \(\theta_0 = \theta_{-1} \).

- The filter coefficient errors now follow a 2nd order dynamics

\[\Delta_{n+1} = \Delta_n - \mu x_{n+1} x_{n+1}^T \Delta_n + \mu x_{n+1} v_{n+1} + \gamma (\Delta_n - \Delta_{n-1}) \]

with \(\Delta_0 = \Delta_{-1} \) (recall that \(\Delta_n = \theta_n - \theta^* \) and \(v_n = y_n - x_n^T \theta^* \)).

- To handle higher-order dynamics, we can use a state-vector,

\[U_n = \begin{bmatrix} \Delta_n \\ \Delta_{n-1} \end{bmatrix} \]
State-Space Form for Momentum LMS

Using $U_n = [\Delta_n, \Delta_{n-1}]^T$, the state-space dynamics becomes

$$U_{n+1} = U_n + A_{n+1} U_n + \mu W_{n+1},$$

$$A_{n+1} = \begin{bmatrix} \gamma I - \mu \cdot x_{n+1} x_{n+1}^T & -\gamma I \\ I & -I \end{bmatrix}, \quad W_{n+1} = \begin{bmatrix} x_{n+1} v_{n+1} \\ 0 \end{bmatrix}$$

This, however, does not have the canonical form of SA methods.

We apply a state-space transformation by Yuan, Ying and Sayed,

$$T = T(\gamma) = \frac{1}{1-\gamma} \begin{bmatrix} I & -\gamma I \\ I & -I \end{bmatrix}$$

$$T^{-1} = T^{-1}(\gamma) = \begin{bmatrix} I & -\gamma I \\ I & -I \end{bmatrix}$$
Transformed State-Space Dynamics

- To get a standard SA form, we also need to synchronize γ and μ,

$$\frac{\mu}{1 - \gamma} = c (1 - \gamma)$$

leading to

$$\mu = c (1 - \gamma)^2.$$

with some fixed constant (hyper-parameter) $c > 0$.

- After applying T, the transformed dynamics becomes an (almost) canonical SA recursion with the fixed gain $\lambda = 1 - \gamma$ as follows:

$$\bar{U}_{n+1} = \bar{U}_n + \lambda \left([\bar{B}_{n+1} + \lambda \bar{D}_{n+1}] \bar{U}_n + \bar{W}_{n+1} \right)$$

where

$$\bar{B}_n = \begin{bmatrix} 0 & 0 \\ 0 & -I \end{bmatrix} + c \begin{bmatrix} -1 & 1 \\ -1 & 1 \end{bmatrix} \otimes x_n x_n^T,$$

$$\bar{D}_n = c \begin{bmatrix} 0 & -1 \\ 0 & -1 \end{bmatrix} \otimes x_n x_n^T,$$

$$\bar{W}_n = c \begin{bmatrix} x_n v_n \\ x_n v_n \end{bmatrix}.$$
The Associated ODE for Momentum LMS

- Let us introduce the notations

\[\tilde{H}_n(\bar{U}) \doteq (\bar{B}_n + \lambda \bar{D}_n)\bar{U} + \bar{W}_n \]

\[h(\bar{U}) \doteq \mathbb{E}[\tilde{H}_n(\bar{U})] = \bar{B}_\lambda \bar{U} \]

\[\bar{B}_\lambda \doteq \mathbb{E}[\bar{B}_n + \lambda \bar{D}_n] = \begin{bmatrix} 0 & 0 \\ 0 & -1 \end{bmatrix} + c \begin{bmatrix} -1 & 1 - \lambda \\ -1 & 1 - \lambda \end{bmatrix} \otimes R^* \]

Then, the associated ODE takes the form, with \(\bar{U}_0 = \bar{U}_0 \),

\[\frac{d}{dt} \bar{U}_t = h(\bar{U}_t) = \bar{B}_\lambda \bar{U}_t \]

- The solution for the limit when \(\lambda \downarrow 0 \) is denoted by \(\bar{U}_t^* \).
- Lemma: If \(\lambda \) is sufficiently small, then \(\bar{B}_\lambda \) is stable.
The ODE Error for Momentum LMS

– [C2’] We again introduce a truncation domain, \bar{D}, as an interior of a compact set, and assume that the ODE does not leave \bar{D}.
– We set a stopping time for leaving the domain

$$\bar{\tau} \doteq \inf \{ n : \bar{U}_n \notin \bar{D} \}$$

– And define the error process, for $n \geq 0$, as

$$\tilde{U}_n \doteq \bar{U}_n - \bar{U}_n$$

– Finally, the normalized and time-scaled error process is

$$\tilde{V}_t(\lambda) \doteq \lambda^{-1/2} \tilde{U}_{[(t \wedge \bar{\tau})/\lambda]}$$

– However, the weak convergence theorems for SA methods cannot be directly applied, because there is an extra λ term in the update.
Approximation by Standard SA Recursion

– We will approximate the original process by (of course, $\bar{U}_0^* = \bar{U}_0$)

$$\bar{U}_{n+1}^* = \bar{U}_n^* + \lambda \left(\bar{B}_{n+1} \bar{U}_n^* + \bar{W}_{n+1} \right)$$

– Using the same steps as before, we can define the normalized and time-scaled ODE error process for the approximation as

$$\bar{V}_t^*(\lambda) = \lambda^{-1/2} \tilde{\bar{U}}_*^{(t \wedge \bar{\tau}^*)/\lambda}$$

where the truncation domain \bar{D}^*, for $\bar{\tau}^*$, is such that $\bar{D} \subseteq \text{int}(\bar{D}^*)$.

– [CW] Assume $\bar{V}_t(\lambda) - \bar{V}_t^*(\lambda)$ converges weakly to 0, as $\lambda \to 0$ (for Momentum LMS, this could be proved based on linearity).

– Thus, weak convergence results can be applied to the approximate process, $\{\bar{V}_t^*(\lambda)\}$, and the results will carry over to $\{\bar{V}_t(\lambda)\}$.
Local Covariances for Momentum LMS

– The asymptotic covariance matrices of the empirical means of the centered correction terms are (under reasonable conditions)

$$
\tilde{S}(\tilde{U}) \doteq \sum_{k=-\infty}^{+\infty} \mathbb{E} \left[(\tilde{H}_k^*(\tilde{U}) - \tilde{h}^*(\tilde{U}))(\tilde{H}_0^*(\tilde{U}) - \tilde{h}^*(\tilde{U}))^T \right]
$$

where H_k^* and h^* denote the limit of H_k and h as $\lambda \downarrow 0$.

– [C3’] We assume that the process defined by

$$
\tilde{L}_t(\lambda) \doteq \sum_{n=0}^{[t/\lambda]-1} \left(\tilde{H}_n^*(\tilde{U}_\lambda^*) - \tilde{h}^*(\tilde{U}_\lambda^*) \right) \sqrt{\lambda}
$$

converges weakly, as $\lambda \to 0$, to a time-inhomogeneous zero-mean Brownian motion $\{\tilde{L}_t\}$ with local covariance matrices $\{\tilde{S}(\tilde{U}_t^*)\}$.
Theorem 2: Weak Convergence for Momentum LMS

Under conditions C0, C1, C2', C3' and CW, process $\{\tilde{V}_t(\lambda)\}$ converges weakly, as $\lambda \to 0$, to a process $\{\tilde{Z}_t\}$ satisfying the following linear stochastic differential equation (SDE),

$$d\tilde{Z}_t = \tilde{B}_* \tilde{Z}_t \, dt + \tilde{S}^{1/2} (\tilde{U}_t^*) \, d\tilde{W}_t$$

for $t \geq 0$, with initial condition $\tilde{Z}_0 = 0$, where $\{\tilde{W}_t\}$ is a standard Brownian motion in \mathbb{R}^{2d} and matrix \tilde{B}_* is defined as

$$\tilde{B}_* = \lim_{\lambda \downarrow 0} \tilde{B}_\lambda = \begin{bmatrix} 0 & 0 \\ 0 & -I \end{bmatrix} + c \begin{bmatrix} -1 & 1 \\ -1 & 1 \end{bmatrix} \otimes R^*$$
Lyapunov Equation for Momentum LMS

- The asymptotic covariance matrix of \(\{ \tilde{Z}_t \} \), denoted by \(\tilde{P} \), satisfies the Lyapunov equation (it is a transformed process)

\[
\bar{B}_* \tilde{P} + \bar{P} \bar{B}_*^T + \bar{S} = 0
\]

- Lemma: the solution of this Lyapunov equation is

\[
\tilde{P} = \frac{c}{2} \begin{bmatrix}
 cS + 2P_0 & cS \\
 cS & cS
\end{bmatrix}
\]

where \(P_0 \) is the asymptotic covariance of the weak limit of LMS.

- Let us denote the asymptotic covariance matrix of \(\{ T_1^+ \tilde{Z}_t \} \) by \(P \), where \(T_1^+ \) is the limit of \(T^{-1}(\gamma) \) as \(\gamma \to 1 \) (or \(\lambda \to 0 \)). Then,

\[
P = T_1^+ \tilde{P} (T_1^+)^T = c \begin{bmatrix} P_0 & P_0 \\ P_0 & P_0 \end{bmatrix}
\]
Comparing LMS with and without Momentum

Theorem 3: Asymptotic Covariance of Momentum LMS

Assume C0, C1, C2, C2’, C3, C3’, CW and that the weak convergences carry over to $\mathcal{N}(0, P_0)$ and $\mathcal{N}(0, P)$, as $t \to \infty$, in the case of plain and Momentum LMS methods, respectively.

Then, the covariance (sub)matrix of the asymptotic distribution associated with LMS with momentum is $c \cdot P_0$, where P_0 is the corresponding covariance of plain LMS and $c = \mu/(1 - \gamma)^2$.

- If $c = 1$, then the two asymptotic covariances are the same.
- But, the convergence rates are quite different, as the normalization is $\mu^{-1/2}$ for LMS and $\lambda^{-1/2}$ for Momentum LMS with $\lambda = \sqrt{\mu}$.
- Decreasing c decreases the asymptotic covariance matrix, but it also decreases the convergence rate, and vice versa, $\lambda = \sqrt{\mu/c}$.
Summary

– We have analyzed the effect of momentum acceleration on the LMS algorithm, as a special case of SGD with fixed gain.
– Momentum acceleration has many known advantages in the deterministic case, but in a stochastic setting it is found to be “equivalent” to standard SGD by Yuan, Ying and Sayed (2016).
– However, for fixed-gain LMS, they only showed this equivalence for the (restrictive) special case of independent observations.
– Here, we provided a simpler asymptotic analysis of LMS with momentum acceleration for stationary, ergodic and mixing signals.
– We presented weak convergence results and explored the trade-off between the rate of convergence and the asymptotic covariance.
– The approach can be generalized to a wide range of SA methods.
Thank you for your attention!

✉ balazs.csaji@sztaki.mta.hu