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a b s t r a c t

The paper suggests a generalization of the Sign-Perturbed Sums (SPS) finite sample system identifi-
cation method for the identification of closed-loop observable stochastic linear systems in state-space
form. The solution builds on the theory of matrix-variate regression and instrumental variable
methods to construct distribution-free confidence regions for the state-space matrices. Both direct
and indirect identification are studied, and the exactness as well as the strong consistency of the
construction are proved. Furthermore, a new, computationally efficient ellipsoidal outer-approximation
algorithm for the confidence regions is proposed. The new construction results in a semidefinite
optimization problem which has an order-of-magnitude smaller number of constraints, as if one
applied the ellipsoidal outer-approximation after vectorization. The effectiveness of the approach is
also demonstrated empirically via a series of numerical experiments.

© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Estimating a mathematical model from observations of a dy-
namical system is a fundamental problem across several fields,
from system identification to signal processing and machine
learning. Standard estimation techniques, such as the prediction
error approach or the generalized method of moments, typi-
cally provide point estimates associated with only asymptotically
guaranteed confidence sets [1].

In practical applications there is often limited statistical knowl-
dge about the noises and uncertainties affecting the system and
limited number of measurements. Furthermore, in many situa-

ions, data can only be gathered under feedback control. This is
especially the case, for example, for economy and biology related
applications. If our problem involves strong safety or stability
requirements, having guaranteed confidence regions are strongly
desirable. Typical examples, where guaranteed region estimates
can be essential are robust and adaptive control [2–4].

One of the first approaches to non-asymptotic system iden-
tification were [5,6]. In the past few years, due to a renewed
interest in system identification methods with finite sample guar-
antees, non-asymptotic high probability bounds on the estima-
tion error were investigated for linear state-space models, see
for example [7–12]. The above results often use strong statistical
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assumptions, such as joint Gaussianity, and [7,8,11] considered
uncontrolled, while [9,12] studied open-loop LTI systems. Non-
asymptotic identification of a closed-loop LTI system with the
REDAR algorithm was investigated in [13], still assuming Gaussian
white noise type uncertainties.

Typical examples of distribution-free system identification al-
gorithms with strong non-asymptotic guarantees are the Leave-
out Sign-dominant Correlation Regions (LSCR) [14–16] and the
Sign-Perturbed Sums (SPS) [17–19] methods. SPS can construct
exact confidence regions for (open-loop) general linear systems
under mild statistical assumptions [20]. In standard SPS, the
confidence set is given by its indicator function, which can be
evaluated at any parameter. In [21] a guaranteed characterization
of SPS was developed using interval analysis, while in [17] an
ellipsoidal outer approximation was given for FIR (finite impulse
response) systems. The strong consistency and the asymptotic
shape of SPS regions were studied in [22].

Several generalizations of SPS were suggested, such as Data
Perturbation (DP) methods [23] which can use other perturba-
tions, not only sign changes; and UD-SPS that is able to detect
undermodelling, in case of FIR systems [24].

The closed-loop applicability of SPS for general linear systems
was studied in [19], where the exact coverage of SPS confidence
egions is shown, but they are only given by their indicators.
n instrumental variables [25] based extension of SPS for linear
egression was presented in [18], making the SPS outer ellip-
oids applicable to ARX (autoregressive with exogenous inputs)

ystems even under feedback.
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All of the SPS related papers above studied scalar models,
where the system is SISO and it is given either with transfer
functions or in a linear regression form. In many control problems
the system is MIMO and it is given in a state-space form which
even includes feedback control, for which the SPS variants above
are not directly applicable.

One could apply the scalar approach of [18] to a state-space
model via vectorization, i.e., after reformulating it as a (poten-
tially huge) linear regression problem [26]. This, however, needs
additional assumptions on the noise vectors (i.e., that their distri-
butions are symmetric w.r.t. each coordinate axis and even their
components are independent). Furthermore, computing the re-
sulting ellipsoidal outer approximation leads to large semidefinite
programming problems.

Instead of doing so, we extend SPS to state-space models by
applying matrix-variate regression which leads to a more compact
approach with relaxed assumptions on the noises (the compo-
nents of the noise vectors can be dependent and only their joint
distributions should be symmetric about zero, full axial symme-
try is not needed). An alternative semidefinite program (SDP) is
suggested, as well, to compute outer ellipsoids, which has an
order-of-magnitude smaller number of constraints than the one
based on [18].

The main contributions of the paper are as follows:

1. A generalization of SPS is proposed to build distribution-
free confidence sets for matrix-variate regression problems
using instrumental variables (MIV-SPS). It is demonstrated
on closed-loop state-space models.

2. The exact coverage probabilities (for any finite sample size)
and the strong consistency of the MIV-SPS confidence re-
gions are proved under mild assumptions.

3. A new, efficient ellipsoidal outer approximation algorithm is
introduced for MIV-SPS, based on SDP.

4. The effectiveness of MIV-SPS is also validated experimen-
tally and it is compared to (scalar) IV-SPS and the confi-
dence ellipsoids of the asymptotic theory.

The paper is organized as follows. In Section 2 the problem setting
and its linear and matrix-variate regression formulations as well
as our main assumptions are introduced. Section 3 gives a sum-
mary of the instrumental variable (IV) method and its asymptotic
theory. In Section 4 the MIV-SPS algorithm is presented, while
Section 5 states the theoretical guarantees of the method. Sec-
tion 6 introduces the ellipsoidal outer-approximation algorithm.
The simulation experiments and comparisons are presented in
Section 7. Finally, Section 8 concludes the paper.

2. Problem setting

This section introduces the closed-loop stochastic linear state-
space model, presents the linear and matrix-variate regression
reformulations and the main assumptions.

2.1. Stochastic linear state-space model

Consider the observable linear state-space (LSS) model

xk+1 = Axk + Buk + wk, (1)

for k = 0, 1, . . . , n − 1, where xk is a dx-dimensional, uk is a
u-dimensional, and wk is a dx-dimensional real random vector;
, B are unknown real matrices to be estimated. The system can
perate in closed-loop with feedback rule
k = Fxk + Grk, (2)
2

here rk is an dr -dimensional real random vector, which can
epresent a reference signal, a setpoint or noise affecting the
ontroller; while F and G are real matrices.
In this work, we will concentrate on region estimation, there-

ore, we aim at constructing a confidence region which contains
atrices A and B with a user-chosen probability.

.2. Linear regression formulation

The LSS dynamics (1) can be written as

xk+1,1
xk+1,2
...

xk+1,dx

⎤⎥⎥⎦ =

⎡⎢⎢⎢⎣
aT1
aT2
...

aTdx

⎤⎥⎥⎥⎦
⎡⎢⎢⎣

xk,1
xk,2
...

xk,dx

⎤⎥⎥⎦ +

⎡⎢⎢⎢⎣
bT1
bT2
...

bTdu

⎤⎥⎥⎥⎦
⎡⎢⎢⎣

uk,1
uk,2
...

uk,du

⎤⎥⎥⎦ +

⎡⎢⎢⎣
wk,1
wk,2
...

wk,dx

⎤⎥⎥⎦, (3)

where {aTi } and {bTi } are the rows of A and B, respectively. Then,
the system dynamics from time 1 until time n can be written in
a linear regression form as

y = Ξ θ∗
+ w, (4)

where θ∗ .
= (aT1, . . . , a

T
dx , b

T
1, . . . , b

T
du )

T, and

y .
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x1,1
x1,2
...

x1,dx
x2,1
...

xn,dx

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, Ξ

.
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ξ T0,1
ξ T0,2
...

ξ T0,dx
ξ T1,1
...

ξ Tn−1,dx

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, w

.
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

w0,1
w0,2
...

w0,dx
w1,1
...

wn−1,dx

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (5)

and the regressors {ξk,i} are defined as follows

ξ Tk,i
.
= (

dim: d2x  
0T
x, . . . , 0

T
x, xTk

ith

, 0T
x,

dim: dxdu  
0T
u, . . . , 0

T
u, uT

k
ith

, 0T
u), (6)

where 0x and 0u are dx and du dimensional zero vectors.
The advantage of the linear regression formulation of (4)

s that the previous results for scalar systems, e.g., the IV-SPS
ethod [19], can be directly applied. Note that in this case each
arginal distribution of the noise vector should satisfy the noise
ssumptions of the SPS, in order to allow the application of scalar
PS approaches.

.3. Matrix-variate regression formulation

In this paper, we argue that a more natural way to handle
even closed-loop) linear state-space models is to apply a matrix-
ariate regression formulation. As we will see, this allows relaxed
ssumption on the noises and leads to computationally more
fficient constructions.
Without vectorization, state-space model (1) can be reformu-

ated as a matrix-variate regression problem, i.e.,

= ΦΘ∗
+ W , (7)

where, unlike in (4), the output, Y , the true parameter, Θ∗, and
the noise, W , are all matrices, as well. That is

Y .
=

⎡⎢⎢⎢⎣
xT1
xT2
...
T

⎤⎥⎥⎥⎦, Φ
.
=

⎡⎢⎢⎢⎣
ϕT
0
ϕT
1
...
T

⎤⎥⎥⎥⎦, Θ∗ .
=

[
AT

BT

]
, W .

=

⎡⎢⎢⎢⎣
wT

0
wT

1
...
T

⎤⎥⎥⎥⎦, (8)
xn ϕn−1 wn−1
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here the regressors ϕk are defined as ϕk
.
= (xTk, u

T
k)

T, which are
d .

= dx + du dimensional vectors.
We will also use the notations Yn, Φn, and Wn, in cases when

the dependence on the sample size n is crucial.

2.4. Indirect identification

In Sections 2.2 and 2.3 the regression problems were formu-
lated using the direct system identification approach, where the
values {xk} and {uk} are used during estimation. The regression
problems can also be formulated using the indirect approach [27],
where the control matrices F and G are known, which is often
the case in an adaptive control setting. By expanding the state
transition equation we can reformulate (1) and (2) as follows

xk+1 = Axk + B(Fxk + Grk) + wk = (A + BF )xk + BGrk + wk

= Cxk + Drk + wk.
(9)

In the indirect identification scheme, using the values {xk} and
{rk}, the C and D matrices are estimated, from which A and B can
be computed (under mild conditions on the control matrices F
and G). In this case (7) should of course be modified accordingly,
for example, the rows of the regressor matrix Φid are given
by ϕ̄k

.
= (xTk, r

T
k )

T, and the true parameter Θ∗

id should contain
matrices C and D.

The linear regression formulation can be obtained similarly to
the approach of Section 2.2, hence omitted.

2.5. Core assumptions

Henceforth, we will directly study the matrix-variate regres-
sion problem (7), irrespectively whether it came from the direct
or the indirect version of the original identification problem. Our
main assumptions will be as follows:

A1. The row vectors {wk} of the noise matrix W are indepen-
dent, and they are distributed symmetrically about zero (but, they
can have different distributions), i.e., for all k, random vectors wk
and −wk have the same distribution.

This assumption is very mild, even milder than the one we get
from standard SPS [17–20,22], if we try to apply it to a vectorized
version of (7). For example, such a vectorized approach would
require that for all k and i, we have

(wk,1, . . . , wk,i−1, wk,i, wk,i+1, . . . , wk,dx )
d
=

(wk,1, . . . , wk,i−1,−wk,i, wk,i+1, . . . , wk,dx ),
(10)

where ‘‘ d=’’ denotes equality in distribution. This is strictly stronger
than wk

d
= −wk, as the latter is implied by (10), but not the

other way around. Moreover, A1 also allows the components of
the noise vector wk to be correlated.

A2. We are given a randommatrix Ψ .
= (ψ0, . . . , ψn−1)T ∈ Rn×d,

for which matrices Ψ and W are independent.

The rows of matrix Ψ are called the instrumental variables. In
a typical situation, they are filtered past inputs using an auxiliary
model [1]. The motivation for using instrumental variables will
be discussed in Section 4.1.

A3. Matrix Ψ TΦ is full rank almost surely.

Observe that from assumption A3 it follows that matrix Ψ TΨ

is also full rank (invertible) almost surely. We also introduce the
notations Vn

.
= 1/nΨ TΦ , and Pn

.
= 1/nΨ TΨ .

Note, as well, that instrumental variable based identification
methods typically also assume that the instrumental variables,
3

{ψk}, and the states, {xk}, are correlated. In the strict sense, this
assumption is not needed to construct exact confidence regions
for the true parameter matrix Θ∗, but an asymptotic correlation
assumption A5 is crucial to prove consistency.

3. Instrumental variable methods

Now, we briefly overview identification with instrumental vari-
able (IV) methods and its asymptotic theory [1].

3.1. Instrumental variable estimate (IVE)

By defining the prediction of a particular Θ matrix by Ŷ .
=

ΦΘ , we compute the prediction errors (residuals) as E(Θ) .
=

Y − Ŷ = Y −ΦΘ . IVE is obtained by solving

Ψ TE(Θ) = Ψ T(Y −ΦΘ) = 0, (11)

then, assuming A3, the IVE can be calculated as

Θ̂ IV
= (Ψ TΦ)−1Ψ TY , (12)

which is usually a biased estimator of Θ∗, under A1–A3, unless
we assume that Φ and W are independent.

3.2. Limiting distribution of IVE

Now, assume that Yn is Rn-valued, i.e., {xk} is a scalar process.
Then, the ‘‘true’’ parameter is a constant vector, θ∗

∈ Rdθ , and the
IVE is a random vector given by (12).

If {wk} are i.i.d., zero mean, and each has variance σ 2
∈ (0,∞),

then the IVE is asymptotically Gaussian:
√
n (θ̂ IVn − θ∗)

d
−−→ N (0, σ 2R−1), (13)

s n → ∞, with R .
= limn→∞ Rn, where {Rn} are

n
.
=

[
1
n
Ψ T

nΦn

]−1 [
1
n
Ψ T

n Ψn

][
1
n
ΦT

nΨn

]−1

, (14)

ssuming that the limit exists and is positive definite [1], where
e (explicitly) emphasized the dependences on n.
In case {xk} is vector-valued, we can reformulated it in a linear

egression form (4). Then, the (vectorized) IVE is also asymptoti-
ally Gaussian, with appropriate modification of the instrumental
ariables, similarly to (6).

.3. Asymptotic confidence regions of IVE

Assuming θ̂ IVn is (vector-valued and) asymptotically normal,
hat is if (13) holds, then we also have [1]
n
σ 2 (θ̂

IV
n − θ∗)TR (θ̂ IVn − θ∗)

d
−−→ χ2(dθ ), (15)

s n → ∞, where χ2(dθ ) is the chi-square distribution with
θ = dim(θ∗) degrees of freedom. Matrix R and variance σ 2 are
nknown, but they can be estimated. Matrix Rn is an empirical
stimate of R and an estimate of σ 2 is

ˆ
2
n
.
=

1
n − dθ

∥E(θ̂ IVn )∥2
2. (16)

hen, a p-level confidence ellipsoid can be defined as

˜n,p
.
=

{
θ ∈ Rdθ : (θ − θ̂ IVn )TRn(θ − θ̂ IVn ) ≤

µσ̂ 2
n

n

}
, (17)

where p = Fχ2(dθ )(µ) is the target confidence probability
and F is the cumulative distribution function of the χ2
χ2(dθ )
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istribution. Then, we have P(θ∗
∈ Υ̃n,p) ≈ p. Note that these

egions only have asymptotic guarantees.

. Matrix-variate generalization of IV-SPS

In this section, we introduce a matrix-variate generalization
f the SPS method using instrumental variables. Our construc-
ion can be efficiently applied to solve closed-loop state-space
dentification problems, formulated as (7).

The scalar variant of IV-SPS for linear regression problems was
riginally suggested in [18], which can be used for state-space
odels after suitable vectorization [26].
One of the advantages of MIV-SPS w.r.t. standard SPS meth-

ds [17,18] is that the matrix-variate regression formulation al-
ows perturbing the components of the noise vectors simultane-
usly, which lead to relaxed assumptions on the noises. More-
ver, the matrix-variate approach also allows a computationally
ore efficient ellipsoidal outer approximation construction than

he original approach.

.1. Intuitive idea of the SPS construction

Using the matrix-variate regression formulation (7), the nor-
al equation (11) can be reformulated as
TΦ(Θ∗

−Θ) + Ψ TW = 0. (18)

ollowing the SPS principle [17,18], we introduce m − 1 sign-
erturbed sums, to construct the region, as follows

i(Θ) .
= Ψ TΛi(Y −ΦΘ) = Ψ TΛiΦ(Θ∗

−Θ) + Ψ TΛiW , (19)

or i = 1, . . . ,m − 1, where Λi is a diagonal matrix, Λi
.
=

iag(αi,1, . . . , αi,n), and {αi,k} are i.i.d. Rademacher variables, i.e.,
(αi,k = 1) = P(αi,k = −1) = 1/2. A reference sum is also
ntroduced, without sign-perturbations,

0(Θ) .
= Ψ T(Y −ΦΘ) = Ψ TΦ(Θ∗

−Θ) + Ψ TW . (20)

For the true parameter matrix, Θ = Θ∗, we have

0(Θ∗) = Ψ TW , and Hi(Θ∗) = Ψ TΛiW . (21)

0(Θ) and Hi(Θ) can be compared using the Frobenius norm ∥·∥F.
ccording to assumption A1, the noise vector sequence {wk} is
ndependent and symmetric about zero, thus H0(Θ∗) and Hi(Θ∗)
ave the same distribution, hence the probability that a particular
Hℓ(Θ∗)∥2

F is ranked at a given position according to a strict total
rder of the values {∥Hj(Θ∗)∥2

F}
m−1
j=0 is the same for all ℓ. Note that

his property is not trivial, since {Hj(Θ∗)}m−1
j=0 are dependent.

When ∥Θ∗
−Θ∥F is ‘‘sufficiently’’ large, the inequality ∀ i ̸= 0 :

H0(Θ)∥2
F > ∥Hi(Θ)∥2

F , will hold, thus ∥H0(Θ)∥2
F will eventually

e the largest of the m functions. The core idea behind the
PS method is to construct the confidence region based on the
ankings of {∥Hj(Θ)∥2

F}
m−1
j=0 and exclude those Θ parameter ma-

rices for which the reference, ∥H0(Θ)∥2
F , is among the q largest.

s we will show, the so constructed confidence set has exactly
robability 1 − q/m of containing the true parameter matrix. In
he final formal description, the functions {∥Hj(Θ)∥2

F}
m−1
j=0 will also

be weighted with a suitable ‘‘shaping’’ matrix.
Instrumental variables (IVs) are introduced, in order to be

able to handle closed-loop systems. In these cases, if Ψ was
imply replaced by Φ , {∥Hj(Θ∗)∥2

F}
m−1
j=0 would not have the same

distribution, because the regressor matrix is not independent of
he noise terms. The IVs counteract these dependencies, thus
hey ensure the validity of the confidence set construction in
losed-loop setups.
4

Algorithm 1 MIV-SPS: Initialization (p)
1: Given the (rational) confidence probability p ∈ (0, 1), set

integers m > q > 0 such that p = 1 − q/m.
2: Calculate the outer product

Pn
.
=

1
nΨ

TΨ ,

and find the principal square root P1/2
n , such that

P1/2
n P1/2

n = Pn.

3: Generate n(m − 1) i.i.d random signs {αi,k} with

P(αi,k = 1) = P(αi,k = −1) =
1
2 ,

for i ∈ {1, . . . ,m − 1}, k ∈ {1, . . . , n} and construct the
following matrices containing these random signs

Λi
.
=

⎡⎢⎣αi,1
. . .

αi,n

⎤⎥⎦.
4: Generate a uniform random permutation π of the set

{0, . . . ,m − 1}, where each of the m! possible permutations
has the same probability 1/(m!) to be selected.

Algorithm 2 MIV-SPS: Indicator (Θ)
1: For the given Θ , compute the prediction errors

E(Θ) .= Y −ΦΘ.

2: Evaluate

S0(Θ) .= 1
nP

−
1
2

n Ψ TE(Θ),

Si(Θ) .= 1
nP

−
1
2

n Ψ TΛiE(Θ),

for i ∈ {1, ...,m − 1}.
3: Order scalars {∥Si(Θ)∥2

F} according to ≻π , which is the stan-
dard ‘‘>’’ relation with random tie-breaking: ∥Sk(Θ)∥2

F ≻π

∥Sj(Θ)∥2
F if and only if (∥Sk(Θ)∥2

F > ∥Sj(Θ)∥2
F) ∨ (∥Sk(Θ)∥2

F =

∥Sj(Θ)∥2
F ∧ π (k) > π (j)).

4: Compute the rank R(Θ) of ∥S0(Θ)∥2
F in the ordering:

R(Θ) .
=

[
1 +

m−1∑
i=1

I
(
∥S0(Θ)∥2

F ≻π ∥Si(Θ)∥2
F

)]
.

5: Return 1 if R(Θ) ≤ m − q, otherwise return 0.

4.2. Formal confidence region construction

The SPS algorithm consists of two main parts, an initialization
and an indicator function. In the initialization part, see Algorithm
1, the input is the user defined confidence probability p. The algo-
rithm computes the main parameters and generates the random
objects needed for the construction of the confidence region. In
the indicator part, see Algorithm 2, the input of the algorithm
s a particular parameter matrix Θ , and the function evaluates
hether Θ is included in the confidence region.
By using the indicator function, the p-level SPS confidence

egion for Θ∗ can be defined as follows

n
.
=

{
Θ ∈ Rd×dx : Indicator(Θ) = 1

}
. (22)

or the instrumental variable estimate Θ̂ IV
n it holds that S0(Θ̂ IV

n ) =

; therefore, the IV estimate is always in the SPS confidence
egion, assuming that it is non-empty.
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. Theoretical guarantees

.1. Exact coverage probability

The confidence regions constructed by MIV-SPS have guaran-
eed coverage probabilities for the true parameter matrix, for any
inite sample size. More precisely, we have:

heorem 1. Assuming A1–A3, the confidence probability of the
constructed confidence region is exactly p, that is,

P
(
Θ∗

∈ Υn
)

= 1 −
q
m

= p. (23)

The proof of Theorem 1, which is a generalization of the proof
f Theorem 1 in [18], can be found in Appendix B.
Observe that the coverage probability is exact, the confidence

et is non-conservative. The assumptions on the noises are rather
ild: no specific (parametric) distributions are assumed, the
oise sequence can even be non-stationary (i.e., each noise vector
an have a different distribution), and there are no moment or
ensity assumptions, either.
This result is more general than the one we would get by ap-

lying the corresponding result of [18] to the vectorized version
f (7), as the assumptions on the noises are milder.

.2. Strong consistency

Similarly to standard SPS, MIV-SPS is also uniformly strongly
onsistent, under the following assumptions:

A4. There exists a positive definite matrix P such that

lim
→∞

1
n Ψ

T
n Ψn = lim

n→∞
Pn = P (a.s.). (24)

A5. There exists an invertible matrix V such that

lim
→∞

1
n Ψ

T
nΦn = lim

n→∞
Vn = V (a.s.). (25)

A6. The following growth rate restriction holds almost surely
or the rows of the regression matrices:
∞

k=1

∥ϕk∥
4

k2
< ∞. (26)

A7. The following growth rate restriction holds almost surely
for the rows of the instrumental variable matrices:
∞∑
k=1

∥ψk∥
4

k2
< ∞. (27)

A8. Finally, the variance growth of the rows of the noise
matrices satisfy the following condition:

∞∑
k=1

(
E
[
∥wk∥

2
])2

k2
< ∞. (28)

Note that these assumptions are also rather mild. For example,
if the regressors (or the instrumental variables) are bounded,
then A6 (or, respectively, A7) is satisfied. If the noise vectors
{wt} are square integrable and i.i.d., then A8 holds. However,
these conditions allow unbounded regressors and instrumental
variables as well as noise terms whose variances grow to infinity.
We also note that A5 ensures the asymptotic correlation of the
instrumental variables and the regressors, which is crucial for
consistency.
5

Theorem 2. Assuming A1–A8, ∀ ε > 0, we have

P
( ∞⋃

k=1

∞⋂
n=k

{
Υn ⊆ Bε(Θ∗)

})
= 1, (29)

where Bε(Θ∗) .= {Θ ∈ Rd×dx : ∥Θ −Θ∗
∥F ≤ ε }.

The proof can be found in Appendix C. The theorem studies
the event that, given ε > 0, after at most finite number of
observations, the confidence regions {Υn} will remain included
in the ε ball around Θ∗, as the sample size, n, increases. This tail
event happens almost surely.

6. Ellipsoidal outer approximation

The MIV-SPS Indicator function evaluates whether a given
candidate parameter matrix Θ belongs to the confidence region,
by comparing the {∥Si(Θ)∥2

F}
m−1
i=1 functions with ∥S0(Θ)∥2

F .
In many applications, we need a compact representation of

the whole confidence set, to make it easier working with it; for
example, in robust control.

In this section we introduce a generalization of the ellipsoidal
outer approximation (EOA) given in [17,18]. Our construction re-
sults in a semidefinite programming (convex) optimization prob-
lem with significantly less constraints than the one we would get
by applying the approach of [17,18] to the vectorized system.

6.1. Ellipsoidal outer approximation

Using the definition of the Frobenius norm, ∥S0(Θ)∥2
F can be

reformulated as follows

∥S0(Θ)∥2
F = tr

([ 1
nΨ

T(Y −ΦΘ)
]T
P−1
n

[ 1
nΨ

T(Y −ΦΘ)
])

= tr
([ 1

nΨ
TΦ(Θ − Θ̂ IV

n )
]T
P−1
n

[ 1
nΨ

TΦ(Θ − Θ̂ IV
n )

])
= tr

(
(Θ − Θ̂ IV

n )TV T
n P

−1
n Vn(Θ − Θ̂ IV

n )
)

= ∥P−1/2
n Vn(Θ − Θ̂ IV

n )∥2
F . (30)

o obtain an ellipsoid over-bound, consider the set given by the
articular values of Θ for which ∥Si(Θ)∥2

F ≥ ∥S0(Θ)∥2
F holds true

or q of the ∥Si(Θ)∥2
F , that is

n ⊆

{
Θ ∈ Rd×dx : ∥P−1/2

n Vn(Θ − Θ̂ IV
n )∥2

F ≤ r(Θ)
}
, (31)

here r(Θ) is the qth largest value of {∥Si(Θ)∥2
F}

m−1
i=1 .

Our objective now is to determine an ellipsoidal over-bound
ith a parameter-independent radius, r , instead of the parameter-
ependent r(Θ). This outer approximation is a guaranteed confi-
ence region for any finite sample with a compact representation
iven by Θ̂ IV

n , Vn, Pn and r .

.2. Convex programming formulation

Comparing ∥S0(Θ)∥2
F with a single ∥Si(Θ)∥2

F , we have{
Θ : ∥S0(Θ)∥2

F ≤ ∥Si(Θ)∥2
F

}
⊆

Θ : ∥S0(Θ)∥2
F ≤ max

Θ:∥S0(Θ)∥2F≤∥Si(Θ)∥2F

∥Si(Θ)∥2
F

}
(32)

nequality ∥S0(Θ)∥2
F ≤ ∥Si(Θ)∥2

F can be reformulated as

tr
(
(Θ − Θ̂ IV

n )TV T
n P

−1
n Vn(Θ − Θ̂ IV

n )
)

≤

tr
([ 1

nΨ
TΛi(Y −ΦΘ)

]T
P−1
n

[ 1
nΨ

TΛi(Y −ΦΘ)
])

=

tr
(
ΘTQ T

i P
−1
n QiΘ −ΘTQ T

i P
−1
n Mi − MT

i P
−1
n QiΘ + MT

i P
−1
n Mi

)
, (33)
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here matrices Qi and Mi are defined as

Qi
.
=

1
nΨ

TΛiΦ, and Mi
.
=

1
nΨ

TΛiY . (34)

Observe that
max

Θ:∥S0(Θ)∥2F≤∥Si(Θ)∥2F

∥Si(Θ)∥2
F = max

Θ:∥S0(Θ)∥2F≤∥Si(Θ)∥2F

∥S0(Θ)∥2
F . (35)

After defining matrix Z .
= P−1/2

n Vn(Θ − Θ̂ IV
n ), the quantity

maxΘ:∥S0(Θ)∥2F≤∥Si(Θ)∥2F
∥Si(Θ)∥2

F can be computed by

max ∥Z∥
2
F

s.t. tr(ZTAiZ + ZTBi + BT
i Z + Ci) ≤ 0,

(36)

where Ai, Bi and Ci are defined as follows

Ai
.
= I − P

1
2 T
n V−T

n Q T
i P

−1
n QiV−1

n P
1
2
n

Bi
.
= P

1
2 T
n V−T

n Q T
i P

−1
n (Mi − QiΘ̂

IV
n ) (37)

Ci
.
= −ΘTQ T

i P
−1
n QiΘ +ΘTQ T

i P
−1
n Mi + MT

i P
−1
n QiΘ − MT

i P
−1
n Mi.

This program is not convex, however weak Lagrange duality
holds, therefore an upper bound on the value of the above opti-
mization problem can be obtained from the dual of the problem,
for which an equivalent problem is

min tr(Γ − λCi)
s.t. λ ≥ 0[

−I + λAi λBi
λBT

i Γ

]
⪰ 0,

(38)

here Γ is a symmetric matrix and ⪰ 0 denotes that the matrix
s positive semidefinite. The derivation of this formulation can
e found in Appendix A. The optimization problem (38) is now
onvex and can be solved using CVXPY [28], e.g., with solver
VXOPT or MOSEK.
Let γ ∗

i be the solution of the program (38). We have{
Θ : ∥S0(Θ)∥2

F ≤ ∥Si(Θ)∥2
F

}
⊆

{
Θ : ∥S0(Θ)∥2

F ≤ γ ∗

i

}
, (39)

herefore

n ⊆ Υ̂n
.
=

{
Θ ∈ Rd×dx : ∥P−1/2

n Vn(Θ − Θ̂ IV
n )∥2

F ≤ r
}
, (40)

here r is the qth largest value of {γ ∗

i }
m−1
i=1 . Υ̂n is an ellipsoidal

uter approximation of Υn, and from (40) we have

P
(
Θ∗

∈ Υ̂n
)

≥ 1 −
q
m

= p, (41)

or any n. The method is summarized by Algorithm 3.
An important difference between the IV-SPS [18] and the MIV-

PS ellipsoidal outer approximation computation, apart from the
educed assumptions on the noise vectors, is the size of the con-
traint matrix in the resulting convex programming formulations.
et L ∈ Rl×l be the constraint matrix we get in the direct LSS
dentification problem. Then, in the IV-SPS case, l grows according
o l = d2x + dxdu + 1 with the dimensions of the inputs and the
utputs. On the other hand, in the MIV-SPS case, it just grows
ccording to l = 2 dx + du with the dimensions.

. Numerical experiments

In this section we present numerical experiments evaluating
IV-SPS for a closed-loop LSS system. The ellipsoidal outer ap-
roximations of MIV-SPS are compared to that of IV-SPS, after
uitable vectorization. The effect of using different exploitation–
xploration trade-offs in the feedback is also studied experimen-
ally. Finally, the sample efficiency of the ellipsoidal over-bound
f the confidence regions of MIV-SPS are investigates for different
eedback rules.
6

Algorithm 3 MIV-SPS: Ellipsoidal Outer Approximation
1: Compute the instrumental variable estimate,
Θ̂ IV

n
.
= (Ψ TΦ)−1Ψ TY .

2: For i ∈ {1, . . . ,m − 1} solve the optimization problem (38)
and let γ ∗

i be the optimal value of the program.
3: Let r be the qth largest value of {γ ∗

i }
m−1
i=1 .

4: The ellipsoidal outer approximation of the SPS confidence
region is given by
Υ̂n

.
=

{
Θ ∈ Rd×dx : ∥P−1/2

n Vn(Θ − Θ̂ IV
n )∥2

F ≤ r
}
.

7.1. Experimental setup

We consider the following closed-loop LSS system

xk+1 = Axk + Buk + wk,

uk = εKxk + (1 − ε)rk,
(42)

where A is a stable matrix (i.e., its eigenvalues are inside the unit
circle), the elements of the square matrix B are sampled from the
uniform distribution U(1, 10) and K is the optimal controller for
ε = 1, given the quadratic cost

J(K ) =

n−1∑
k=0

q∥xk∥2
+ v∥uk∥

2, (43)

i.e., an LQR problem [2]. In the cost function the values of the
scalar cost weights are q = v = 1, unless stated otherwise.
The scalar ε ∈ (0, 1) is the exploitation parameter. Sequences
{wk} and {rk} contain independent random vectors, where the
references are standard normal, while the noise distributions vary
with the experiments. We consider a finite data sample of size n
that contains input-output-reference tuples, {⟨uk, xk, rk⟩}n−1

k=0 .
The instrumental variables {ψk} are generated from the data.

We present the direct and the indirect cases side-by-side. First,
least squares estimates of the parameter matrices are computed.
The system parameters A and B are estimated in the direct case,
while in the indirect case C and D are estimated. Let Θ̂LS and
Θ̂LS

id denote the LS estimate in the direct and the indirect case,
respectively:

Θ̂LS .
= (ΦTΦ)−1ΦTY , Θ̂LS

id
.
= (ΦT

idΦid)−1ΦT
idY , (44)

where

Θ̂LS .
=

[
ÂT

B̂T

]
, Θ̂LS

id
.
=

[
ĈT

D̂T

]
. (45)

Using the estimates Â and B̂, or Ĉ and D̂ in the indirect case,
noiseless state sequences are generated as follows

x̄k+1
.
= Âx̄k + B̂rk, x̄idk+1

.
= Ĉ x̄k + D̂rk. (46)

Using the noiseless state sequences, the instrumental variables
can be defined in the direct and indirect cases as

ψk
.
= (x̄Tk, r

T
k )

T, ψ id
k
.
= ((x̄idk )

T, rTk )
T. (47)

In the strict sense, the IVs defined in (47) are not completely
independent of the noise, because the least squares estimates
Θ̂LS and Θ̂LS

id depend on the noise. However, in both estimates
the noises are ‘‘averaged out’’, hence their effect is minimal. If
the LS estimates were constructed from a data sample that is
independent of the sample used by the SPS algorithm, then the
obtained regions would be guaranteed to have exact coverage.
The difference between these two constructions considering the
experimental results is negligible, therefore we only used one

data sample.
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Table 1
Flops and CPU time needed to compute the ellipsoidal
outer approximation of MIV-SPS relative to IV-SPS, n =

500, s = 500.
Dim. Params. Rel. flops Rel. time

1 2 0.839 1.03
2 8 0.427 0.923
3 18 0.146 0.528
4 32 0.056 0.195

Table 2
Comparison of empirical probabilities of covering the true parameter matrix for
standard normal noises, n = 500, s = 500.
Dim. Params. p̂AS p̂IN p̂IV p̂MIV

1 2 0.892 0.894 0.926 0.926
2 8 0.892 0.894 0.954 0.946
3 18 0.89 0.888 0.982 0.978
4 32 0.902 0.89 0.996 0.996

In the experiments the conservatism of the ellipsoidal outer
pproximations of the confidence regions is investigated using
onte Carlo simulations. In these simulations we set the con-

idence probability to p = 0.9 and computed an empirical
robability p̂ = sin/s, where sin is the number of simulations,
here the true parameter matrix Θ∗ is included in the ellipsoid,
nd s is the number of simulations.

.2. Comparison of MIV-SPS and IV-SPS

As discussed in Section 6.2, a crucial difference between the
IV-SPS and IV-SPS ellipsoidal outer approximation (EOA) com-
utations is the size of the constraint matrices in the SDP for-
ulations. As a consequence, solving the convex program in the
IV-SPS case should be faster than in the IV-SPS case. Table 1
resents the number of flops and the required CPU time for
olving the convex programs in the MIV-SPS EOA relative to
hose of the IV-SPS EOA, for different dimensions. The obtained
esults confirm that EOAs can be computed more efficiently by
he MIV-SPS approach, especially in higher dimensions.

The experiments discussed in this section, i.e., Tables 1, 2, 3
nd 4, are all based on s = 500 Monte Carlo simulations, for each
imension, with sample size n = 500 using an open-loop system
ε = 0) and direct identification.

Although, strong duality is not proven yet for the reformu-
ation of (38), only weak duality is exploited, the experimental
vidences are indicative of the phenomenon that it holds. The
mpirical coverage probabilities (i.e., the ratio of cases when the
egions cover the true parameter) in the MIV-SPS EOA case p̂MIV
re very close to those of IV-SPS EOA p̂IV, for which strong duality
s known.

We have compared the empirical coverage probabilities p̂ of
the asymptotic ellipsoids p̂AS, see Section 3, the empirical prob-
abilities p̂IN for the MIV-SPS Indicator algorithm, presented in
Section 4 (the ratio of cases when the Indicator algorithms return
1 for the true parameter), and the empirical probabilities p̂IV, p̂MIV
for three noise scenarios. The target confidence probability was
always 0.9.

The empirical coverage probabilities in case the process noise
{wk} is a sequence of i.i.d. (multivariate) standard normal vectors
is given in Table 2. It can be observed that the asymptotic and the
MIV-SPS Indicator confidence regions are very precise and the SPS
confidence ellipsoidal outer approximations become more con-
servative as the dimension increases, but the empirical coverage
probabilities of MIV-SPS and IV-SPS stay close to each other.

In the case, where the process noise {wk} is a sequence of i.i.d.

Gaussian random vectors, the asymptotic confidence region gives

7

Table 3
Comparison of empirical probabilities of covering the true parameter for mixture
of two Gaussian noises, n = 500, s = 500.
Dim. Params. p̂AS p̂IN p̂IV p̂MIV

1 2 0.9 0.9 0.932 0.932
2 8 0.876 0.9 0.95 0.958
3 18 0.852 0.908 0.984 0.98
4 32 0.847 0.898 0.982 0.982

Table 4
Comparison of empirical coverage probabilities for bimodal mixture of two
non-stationary Laplacian noises, n = 500, s = 500.
Dim. Params. p̂AS p̂IN p̂IV p̂MIV

1 2 0.888 0.896 0.928 0.928
2 8 0.872 0.906 0.942 0.96
3 18 0.846 0.908 0.968 0.976
4 32 0.834 0.898 0.976 0.982

accurate estimation. SPS builds confidence regions under milder
conditions, even when the noise is non-stationary. Simulation
experiments were performed, where {wk} is a sequence of i.i.d.
imodal mixture of two Gaussians wk =

1
2Z1 +

1
2Z2, Z1 ∼

(1, σwI), Z2 ∼ N (−1, σwI), and where {wk} is a sequence of
ime dependent mixture of two Laplacians wk =

1
2Z3 +

1
2Z4, Z3 ∼

( 5(k+1)
n , ( (k+1)

n +σw)I), Z4 ∼ L(−5(k+1)
n , ( (k+1)

n +σw)I), with σw = 1.
The results of these experiments are presented in Tables 3 and

4. In both experiments the empirical coverage probabilities of the
asymptotic confidence regions are less than p = 0.9 by a signifi-
cant margin. In the bimodal Gaussian case, this deviation is due to
the insufficient sample size, while in the bimodal Laplacian noise
case, it is also due to the heavier-tail and the non-stationarity of
the noise.

On the other hand, the MIV-SPS Indicator algorithm constructs
proper confidence regions in both cases, and the ellipsoidal outer
approximations give similar coverage probabilities in the IV-SPS
and MIV-SPS cases. The ellipsoidal outer approximations intro-
duce some conservatism, but compared to the confidence regions
based on the asymptotic theory, they provide better results when
a non-asymptotic lower bound on the probability is required.

7.3. Exploration vs exploitation

The signal {rk} can be seen as an exploration noise affect-
ing the controller instead of a reference signal. In this case the
parameter ε controls the exploitation–exploration trade-off. The
system operates in an open-loop setting when ε = 0 and without
exploration in a closed-loop when ε = 1. In our experimental
setting, given in (42), the choice of exploitation rate affects the
size of the EOA of the confidence region in a way that with more
exploitation the outer approximation of the confidence region
gets more conservative. This phenomenon is due to the construc-
tion of our instrumental variables detailed in Section 7.1. The
instrumental variables are created by generating a noiseless state
sequence using the exploration noise {rk}. With less exploration,
the correlation between the instrumental variable sequence and
the state sequence is decreasing, thus the IV estimate gets less
accurate, therefore the EOA gets more conservative. In a real-
world settings, instrumental variables can often be created from
signals that are observable, but not controllable. In such cases no
conservatism would be introduced with more exploitation.

The choice of the controller K also influences the conservatism
of the EOA. We have investigated the empirical coverage prob-
abilities of MIV-SPS EOAs for different q and v instances using
the direct and indirect identification approaches. The results are
illustrated in Fig. 1 for the direct case and in Fig. 2 for the indirect
case. The results are based on s = 500 Monte Carlo simulations
for each ε on a 2-dimensional LSS system with sample size n =

500. Standard normal process noise is applied.
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Fig. 1. Empirical coverage probability of MIV-SPS EOA as a function of the
exploitation parameter for different feedback setups, using direct identification,
or a 2-dimensional LSS, n = 500, s = 500.

Fig. 2. Empirical coverage probability of MIV-SPS EOA as a function of the
exploitation parameter for different feedback setups, using indirect identification,
or a 2-dimensional LSS, n = 500, s = 500.

7.4. Sample complexity

In the last experiments, the sample complexity of the MIV-SPS
EOA method is investigated. As the sample size n increases, the
EOA becomes less conservative, hence it provides more accurate
confidence regions. Simulation results are presented for different
exploitation parameter ε values. 500 Monte Carlo simulations
were run for each sample size on a 2-dimensional LSS system,
using standard normal noise and with direct identification. The
results are illustrated in Fig. 3. It can be observed that with more
exploitation (as ε increases), the empirical coverage probability
of EOA converges slower to the target confidence, due to the
inaccuracy of the IV estimate.

8. Conclusions

The paper introduced a matrix variate regression and instru-
mental variables based generalization of the Sign-Perturbed Sums
(SPS) identification method, called MIV-SPS. It was illustrated on
closed-loop linear state-space (LSS) models. The MIV-SPS method
constructs non-asymptotic, distribution-free confidence regions
around the instrumental variable estimate under mild statistical
8

Fig. 3. Empirical coverage probability of MIV-SPS EOA as a function of the
sample size n in an open-loop (ε = 0) setting, using direct identification, for
a 2-dimensional LSS, s = 500.

assumptions on the process noise. The exact confidence and the
strong consistency of MIV-SPS regions were proven.

A computationally efficient ellipsoidal outer approximation
(EOA) method was suggested, as well, which is a compact over-
bound of the MIV-SPS confidence region. Simulation experiments
demonstrated that, for LSS models, our proposed method com-
putes the EOA more efficiently than the scalar IV-SPS, developed
earlier, while keeping a similar size. Experiments comparing MIV-
SPS and the confidence ellipsoids based on the asymptotic theory
were also concluded, showing the superiority of MIV-SPS, e.g., for
heavy-tailed and non-stationary noise sequences.

Extending MIV-SPS to be able to handle partially observable
systems and combining the ideas with robust control approaches
are subject of future research.
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ppendix A. Semidefinite programming formulation of the
uter approximation

The optimization problem

ax ∥Z∥
2
F

s.t. tr(ZTAiZ + ZTBi + BT
i Z + Ci) ≤ 0,

(A.1)

as the equivalent form

in − tr(ZTZ)

s.t. tr(ZTAiZ + ZTBi + BT
i Z + Ci) ≤ 0.

(A.2)

he Lagrangian of the problem (A.2) can be written as

(Z, λ) .
= − tr(ZTZ) + λ tr(ZTAiZ + ZTBi + BT

i Z + Ci)

= tr(ZT(−I + λAi)Z + λZTBi + λBT
i Z + λCi).

(A.3)

The Lagrange dual function can be formulated as

g(λ) .
= inf

Z
L(Z, λ). (A.4)

f L(Z, λ) takes its minimum with respect to Z , then

ZL(Z, λ) = (−I + λAi)Z + λBi = 0. (A.5)

rom the above equation it can be seen that L(Z, λ) takes its
inimum value, where Z = −(−I +λAi)−1λBi, thus the Lagrange

dual function can be written as

g(λ) = tr(−λ2BT
i (−I + λAi)−1Bi + λCi), (A.6)

therefore, the dual problem can be formulated as

max tr(−λ2BT
i (−I + λAi)−1Bi + λCi)

s.t. λ ≥ 0.
(A.7)

The optimization problem (A.7) can be reformulated as

min tr(Γ − λCi)
s.t. λ ≥ 0

Γ ⪰ λ2BT
i (−I + λAi)−1Bi,

(A.8)

where Γ is a symmetric matrix and relation ‘‘⪰’’ denotes the
Loewner partial ordering of semidefinite matrices.

Finally, the constraint Γ ⪰ λ2BT
i (−I + λAi)−1Bi can be refor-

mulated by resorting to the Schur complement,[
−I + λAi λBi
λBT

i Γ

]
⪰ 0, (A.9)

which leads to the convex optimization problem (38).

Appendix B. Proof of Theorem 1 (Exact Confidence)

Definition 1. Let Z1, . . . , Zk be a finite collection of random vari-
ables and ≻ a strict total order. If for all permutations i1, . . . , ik
of indices 1, . . . , k we have

P(Zik ≻ Zik−1 ≻ · · · ≻ Zi1 ) =
1
k!
, (B.1)

hen we call {Zi} uniformly ordered w.r.t. order ≻.

emma 1. Let α, β1, . . . , βk be i.i.d. random signs (random vari-
ables taking ±1 with probability 1/2 each), then the variables α, α ·

1, . . . , α · βk are i.i.d. random signs.

emma 2. Let X and Y be two independent, Rd-valued and Rk-
alued random vectors, respectively. Let us consider a (measurable)
unction g : Rd

×Rk
→ R and a (measurable) set A ⊆ R. If we have

(g(x, Y ) ∈ A) = p, for all (constant) x ∈ Rd, then we also have
(g(X, Y ) ∈ A) = p.
9

emma 3. Let Z1, . . . , Zk be real-valued, i.i.d. random variables.
hen, they are uniformly ordered w.r.t. ≻π .

The proofs of Lemmas 1–3 can be found in [17].

Lemma 4. Let w be a random vector with w d
= −w, that is w

s symmetrically distributed about zero. Then, there exist a random
ign s and a random vector v with the properties: s is independent
of v and w = s · v.

Proof of Lemma 4. Let s be a random sign (that is: a Rademacher
random variable) which is independent of w, and let v .

= s · w.
hen, it holds for every event A, that

P(s = 1 ∧ v ∈ A) = P(s = 1 ∧ s · w ∈ A)
= P(s = 1 ∧ w ∈ A)
= P(s = 1) · P(w ∈ A)
= P(s = 1) · P(s · w ∈ A)
= P(s = 1) · P(v ∈ A).

(B.2)

P(s = −1 ∧ v ∈ A) = P(s = −1 ∧ s · w ∈ A)
= P(s = −1 ∧ −w ∈ A)
= P(s = 1) · P(−w ∈ A)
= P(s = 1) · P(s · w ∈ A)
= P(s = 1) · P(v ∈ A).

(B.3)

Therefore, s and v are independent and w = s · v. □

Proof of Theorem 1. By definition, the true parameter, Θ∗, is
included in the confidence region if R(Θ∗) ≤ m − q. In this case
∥S0(Θ∗)∥2

F is ranked 1, . . . ,m−q according to the ascending order
(w.r.t. ≻π ) of variables {∥Si(Θ∗)∥2

F}.
We will prove that {∥Si(Θ∗)∥2

F} are uniformly ordered, thus
the probability that ∥S0(Θ∗)∥2

F takes any position in the ordering
equals 1/m, therefore the probability that its rank is at most
m− q is 1− q/m. Throughout the proof we will work with a fixed
realization of the instrumental variables, the general case follows
from Lemma 2.

For Θ = Θ∗, the Si(·) functions can be formulated as

Si(Θ∗) =
1
nP

−
1
2

n Ψ TΛiW , (B.4)

∀ i ∈ {0, . . . ,m − 1}, where Λ0 = I ∈ Rn×n.
From (B.4) it can be seen that functions {Si(·)} depend on the

perturbed noise matrices, {ΛiW }, via the same function for all i,
which is denoted by S(ΛiW ) .= Si(Θ∗).

By using the result of Lemma 4, the noise vector sequence {wk}

can be decomposed as wk = skw̃k, where sk is a Rademacher
random variable independent of w̃k. Let γi,k

.
= αi,ksk, where α0,k =

1, ∀k,∀i ∈ 0, . . . ,m − 1. Lemma 1 can be used to show that γi,k
are i.i.d. random signs, since {αi,k} are random signs and s̃k is a
Rademacher random variable. As a consequence of Lemma 4, the
sequence {γi,k} are independent of {w̃k}.

By fixing a realization of {w̃k}, called {vk}, real-valued variables
{Zi} can be defined as

Zi
.
= ∥S(ΓiM)∥2

F, (B.5)

where

Γi
.
=

⎡⎢⎣γi,1 . . .

γi,n

⎤⎥⎦, M .
=

⎡⎢⎢⎢⎣
vT0
vT1
...

vTn−1

⎤⎥⎥⎥⎦. (B.6)

Random variables {Zi} are i.i.d., and by Lemma 3, it follows that
they are uniformly ordered w.r.t. ≻ .
π
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In order to relax the assumption of a fixed realization of
{w̃k}, Lemma 2 can be applied. By doing so, it follows that the
{∥Si(Θ∗)∥2

F} variables are uniformly ordered (unconditionally),
which completes the proof of the theorem. □

Appendix C. Proof of Theorem 2 (Strong Consistency)

Proof of Theorem 2. The proof consists of two parts. In the first
part we are going to prove that for any Θ ′

̸= Θ∗:

∥S0(Θ ′)∥2
F

a.s.
−→ ∥P−

1
2 V Θ̃∥

2
F > 0, (C.1)

here matrices P and V are defined in Assumptions A4 and A5,
nd Θ̃ .

= (Θ∗
−Θ ′). On the other hand, for i ̸= 0, we have

Si(Θ ′)∥2
F

a.s.
−→ 0, (C.2)

s n → ∞. Consequently, as n grows, the rank R(Θ ′) of ∥S0(Θ ′)∥2
F

will be eventually equal to m, therefore Θ ′ will be (a.s.) excluded
from the confidence region, as n → ∞.

The results will be derived for a fixed realization of the in-
strumental variables, just like in the proof of Theorem 1. Since
the matrix of IVs Ψn and the noise W are independent A2, the
obtained results hold true (almost surely) on the whole proba-
bility space, ensured by Lemma 2. In the second part, we will
prove that the confidence region converge to Θ∗ uniformly, not
just pointwise.

Function S0(Θ ′) can be formulated as

S0(Θ ′) =
1
nP

−
1
2

n Ψ T
n En(Θ

′) =
1
nP

−
1
2

n Ψ T
n (Yn −ΦnΘ

′)

=
1
nP

−
1
2

n Ψ T
nΦnΘ̃ +

1
nP

−
1
2

n Ψ T
n Wn. (C.3)

he two terms can be examined separately. By observing that
·)

1
2 is a continuous matrix function and applying A4 and A5 the

convergence of the first part follows, thus

1
nP

−
1
2

n Ψ T
nΦnΘ̃ = P

−
1
2

n VnΘ̃
a.s.
−→ P−

1
2 V Θ̃, (C.4)

s n → ∞. The convergence of the second term is proved
from the element-wise application of Kolmogorov’s strong law of
large numbers (SLLN) for independent variables [29]. Note that

{P
−

1
2

n }
a.s.
−→ {P−

1
2 } as n → ∞, thus it is enough to prove that

1
nΨ

T
n Wn

a.s.
−→ 0. By applying the Cauchy–Schwarz inequality, A7,

nd A8, we have
∞∑
k=0

E
[
(ψk,jwk,l)2

]
k2

≤

∞∑
k=0

∥ψk∥
2

k
E
[
∥wk∥

2
]

k
≤

∞∑
k=0

∥ψk∥
4

k2

√ ∞∑
k=0

E
[
∥wk∥

2
]2

k2
< ∞.

(C.5)

herefore the condition of the SLLN holds, thus

1
nP

−
1
2

n Ψ T
n Wn

a.s.
−→ 0, as n → ∞. (C.6)

From the above results we obtain

∥S0(Θ ′)∥2
F

a.s.
−→ ∥P−

1
2 V Θ̃∥

2
F > 0, (C.7)

since V is full rank, P−
1
2 is positive definite and Θ ′

̸= Θ∗. The
imit of Si(Θ ′) can be derived similarly,

i(Θ ′) =
1
nP

−
1
2

n Ψ T
nΛi(Yn −ΦnΘ

′)

=
1
nP

−
1
2

n Ψ T
nΛiΦn(Θ̃) +

1
nP

−
1
2

n Ψ T
nΛiWn,

(C.8)

We will examine the asymptotic behavior of the two terms sepa-

rately again. The convergence of 1P
−

1
2Ψ TΛW follows from (C.5),
n n n i n

10
since the variance of αi,kψk,jwk,l equals the variance of ψk,jwk,l,
therefore

1
nP

−
1
2

n Ψ T
nΛiWn

a.s.
−→ 0, as n → ∞. (C.9)

In the first term, it holds that, {P
−

1
2

n }
a.s.
−→ {P−

1
2 } and Θ̃ is con-

stant, thus it is enough to prove that 1
nΨ

T
nΛiΦn converges almost

surely to 0 element-wise. First, we fix a realization of every
random variable except the random signs (Λi). For this realization
the assumptions A6 and A7 hold. Then, {αi,kψk,jϕk,l} becomes
a sequence of conditionally independent random variables with
conditional covariances (ψk,jϕk,l)2. Using A6 and A7, we get

∞∑
k=0

(ψk,jϕk,l)2

k2
≤

∞∑
k=0

∥ψk∥
2

k
∥ϕk∥

2

k
≤√ ∞∑

k=0

∥ψk∥
4

k2

√ ∞∑
k=0

∥ϕk∥4

k2
< ∞,

(C.10)

therefore, by applying Kolmogorov’s SLLN element-wise,

1
nP

−
1
2

n Ψ T
nΛiΦnΘ̃

a.s.
−→ 0, (C.11)

as n → ∞ holds for (almost) any realization, therefore holds true
unconditionally. From the previous derivation

∥Si(Θ ′)∥2
F

a.s.
−→ 0, (C.12)

s n → ∞, for each i ∈ {1, . . . ,m − 1}.
Previous results showed that for each i, the function ∥Si(Θ ′)∥2

F
onverges with probability 1. As a consequence, for each realiza-
ion ω ∈ Ω (from an event with probability one, where (Ω,F,P)
s the underlying probability space), and for each δ > 0, there
xists a (realization dependent) N(ω) > 0 such that for n ≥ N

(from now on, i ̸= 0),

∥P
−

1
2

n Vn − P−
1
2 V∥F ≤ δ, ∥

1
nP

−
1
2

n Ψ T
n Wn∥F ≤ δ, (C.13)

∥
1
nP

−
1
2

n Ψ T
nΛiΦn∥F ≤ δ, ∥

1
nP

−
1
2

n Ψ T
nΛiWn∥F ≤ δ. (C.14)

Then, for all n ≥ N , we have

∥S0(Θ ′)∥F = ∥P
−

1
2

n VnΘ̃ +
1
nP

−
1
2

n Ψ T
n Wn∥F =

∥(P
−

1
2

n Vn − P−
1
2 V )Θ̃ + P−

1
2 V Θ̃ +

1
nP

−
1
2

n Ψ T
n Wn∥F =

∥ − P−
1
2 V Θ̃ − (P

−
1
2

n Vn − P−
1
2 V )Θ̃ −

1
nP

−
1
2

n Ψ T
n Wn∥F ≥

∥ − P−
1
2 V Θ̃∥F − ∥(P

−
1
2

n Vn − P−
1
2 V )Θ̃∥F − ∥

1
nP

−
1
2

n Ψ T
n Wn∥F ≥

∥P−
1
2 V Θ̃∥F − δ∥Θ̃∥F − δ = ∥UσΣV T

σ Θ̃∥F − δ∥Θ̃∥F − δ ≥

min(P−
1
2 V )∥Θ̃∥F − δ∥Θ̃∥F − δ, (C.15)

where UσΣVσ is the SVD decomposition of P−
1
2 V and σmin(·)

denotes the smallest singular value. We also have

∥Si(Θ ′)∥F = ∥
1
nP

−
1
2

n Ψ T
nΛiΦnΘ̃ +

1
nP

−
1
2

n Ψ T
nΛiWn∥F

≤ ∥
1
nP

−
1
2

n Ψ T
nΛiΦn∥F∥Θ̃∥F + ∥

1
nP

−
1
2

n Ψ T
nΛiWn∥F

≤ δ∥Θ̃∥F + δ. (C.16)

Hence, we have ∥Si(Θ ′)∥F < ∥S0(Θ ′)∥F,∀Θ
′ that satisfy

δ∥Θ̃∥F + δ < σmin(P−
1
2 V )∥Θ̃∥F − δ∥Θ̃∥F − δ, (C.17)

which can be reformulated as

κ0(δ)
.
=

2δ
−

1 < ∥Θ̃∥F, (C.18)

σmin(P 2 V ) − 2δ
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t

δ

c

R

herefore, those Θ ′ for which κ0(δ) < ∥Θ∗
− Θ ′

∥F are not in
the confidence region Υn, for n ≥ N . For any ε > 0, by setting

= (εσmin(P−
1
2 V ))/(2+2ε), we have Υn ⊆ Bε(Θ∗), therefore, the

laim of the theorem follows. □
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