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Regularity Assumption
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Perturbed Residuals
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Perturbed Datasets
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Alternative Regression Models
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Dynamical Systems

Many (discrete-time) dynamical system models in science and
engineering can be formalized as controlled Markov chains.

Dynamical System (Markov)

xt , f (xt−1, ut ,wt)

where

t — time (discrete)

xt — output (state)

ut — input (external)

wt — noise (innovation)

f — transition function
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Point Estimation

Consider the parametric estimation problem of the system

xt , fθ∗(xt−1, ut ,wt),

parametrized with θ∗ ∈ Θ ⊆ Rd

Given: a finite sample, Z, of outputs {xt} and inputs {ut}

Point Estimate (Parametric)

θ̂Z , arg min
θ∈Θ

V(θ | Z)

where V is a criterion function.
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Confidence Regions

In practice often some quality tag is needed to judge the estimate.

Safety, stability, or quality requirements? ⇒ confidence regions

Confidence Region (Level µ)

P
(
θ∗ ∈ Θ̂Z,µ

)
≥ µ

for some µ ∈ (0, 1), where θ∗ is the “true” parameter, Θ̂Z,µ ⊆ Θ.

Typically the level sets of the (scaled) limiting distribution is used.

Issues: only approximately correct for finite samples,
requires the existence of a (known) limiting distribution.

Balázs Csanád Csáji On the Reliability of Regression Models | 12



Main Objectives

• We aim at building confidence regions for dynamical systems.

• With non-asymptotic guarantees (“finite sample” method).

• Which are distribution-free: namely, do not make strong
statistical assumption on the innovations of the process.

• They should be built around specific point estimates.

• The Sign-Perturbed Sums (SPS) method is presented.

• Its main assumption is that the noise terms are symmetric.

• Under which it can even provide exact confidence sets.

• Main examples: linear regression, general linear dynamical
systems (including closed-loop systems), volatility models.
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Linear Regression

Consider a standard linear regression problem:

Linear Regression

xt , ϕT
t θ
∗ + wt

where

xt — output (for time t = 1, . . . , n)

ϕt — regressor (deterministic, d dimensional)

wt — noise (zero mean, uncorrelated)

σ2 — variance of the noise (homoscedastic)

θ∗ — true parameter (deterministic, d dimensional)

Φn = [ϕ1, . . . , ϕn]T — skinny and full rank
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Least Squares

Given: a sample, Z, of size n of outputs {xt} and regressors {ϕt}
A classical approach is the least squares criterion, namely

V(θ | Z) ,
1

2

n∑
t=1

(xt − ϕT
t θ)2.

The least squares estimate (LSE) can be found by solving

Normal Equation

∇θV(θ̂n | Z) =
n∑

t=1

ϕt(xt − ϕT
t θ̂n) = 0
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Asymptotic Normality

LSE can be explicitly formulated as

θ̂n =

( n∑
t=1

ϕtϕ
T
t

)−1( n∑
t=1

ϕtxt

)
.

LSE is asymptotically normal

Limiting Distribution

√
n (θ̂n − θ∗)

d−→ N (0, σ2 R−1) as n→∞

where R is the limit of Rn = 1
n

∑n
t=1 ϕtϕ

T
t as n→∞ (if exists).
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Confidence Ellipsoids

The standard confidence region construction is then

Confidence Ellipsoid

Θ̃n,µ ,

{
θ ∈ Rd : (θ − θ̂n)T Rn (θ − θ̂n) ≤ µ σ̂2

n

n

}

where P(θ∗ ∈ Θ̃n,µ)≈Fχ2(d)(µ), where Fχ2(d) is the CDF of χ2(d),

σ̂2
n ,

1

n − d

n∑
t=1

(xt − ϕT
t θ̂n)2,

is an estimate of σ2 based on the sample.
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Reference and Sign-Perturbed Sums
Let us introduce a reference sum and m − 1 sign-perturbed sums.

Reference Sum

S0(θ) , R
− 1

2
n

n∑
t=1

ϕt(xt − ϕT
t θ)

Sign-Perturbed Sums

Si (θ) , R
− 1

2
n

n∑
t=1

ϕt αi ,t(xt − ϕT
t θ)

for i = 1, . . . ,m − 1, where αi ,t (t = 1, . . . , n) are i.i.d. random
signs, that is αi ,t = ±1 with probability 1/2 each (Rademacher).
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Intuitive Idea: Distributional Invariance

Assume {wt} are independent and each wt is symmetric about zero.

Observe that, if θ = θ∗, we have (i = 1, . . . ,m − 1)

Distributional Invariance

S0(θ∗) = R
− 1

2
n

n∑
t=1

ϕtwt

Si (θ
∗) = R

− 1
2

n

n∑
t=1

ϕt αi ,twt

Consider the ordering ‖S(0)(θ∗)‖2 ≺ · · · ≺ ‖S(m−1)(θ∗)‖2

Note: relation “≺” is the canonical “<” with random tie-breaking

All orderings are equally probable! (they are conditionally i.i.d.)
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Intuitive Idea: Reference Dominance

What if θ 6= θ∗?

In fact, the reference paraboloid ‖S0(θ)‖2 increases faster than
{‖Si (θ)‖2}, thus will eventually dominate the ordering.

Intuitively, for “large enough” ‖θ̃‖, where θ̃ , θ∗ − θ

Eventual Dominance of the Reference Paraboloid

∥∥∥∥ n∑
t=1

ϕtϕ
T
t θ̃ +

n∑
t=1

ϕtwt

∥∥∥∥2

R−1
n

>

∥∥∥∥ n∑
t=1

±ϕtϕ
T
t θ̃ +

n∑
t=1

±ϕtwt

∥∥∥∥2

R−1
n

with “high probability” (for simplicity ± is used instead of {αi ,t}).
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Non-Asymptotic Confidence Regions

The rank of ‖S0(θ)‖2 in the ordering of {‖Si (θ)‖2} w.r.t. ≺ is

R(θ) = 1 +
m−1∑
i=1

I(‖Si (θ)‖2 ≺ ‖S0(θ)‖2),

where I(·) is an indicator function.

Sign-Perturbed Sums (SPS) Confidence Regions

Θ̂n ,
{
θ ∈ Rd : R( θ ) ≤ m − q

}

where m > q > 0 are user-chosen integers (design parameters).
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Exact Confidence

(A1) {wt} is a sequence of independent random variables.

Each wt has a symmetric probability distribution about zero.

(A2) The outer product of regressors is invertible, det(Rn) 6= 0.

Exact Confidence of SPS

P
(
θ∗ ∈ Θ̂n

)
= 1− q

m

for finite samples. Parameters m and q are under our control.

Note that ‖S0(θ̂n)‖2 = 0, thus θ̂n ∈ Θ̂n, assuming it is non-empty.
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Star Convexity

Set X ⊆ Rd is star convex if there is a star center c ∈ Rd with

∀x ∈ X , ∀β ∈ [0, 1] : β x + (1− β) c ∈ X .

Star Convexity of SPS

Θ̂n is star convex with the LSE, θ̂n, as a star center

Hint Θ̂n is the union and intersection of ellipsoids containing LSE.
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Strong Consistency

(A1) independence, symmetricity: {wt} are independent, symmetric

(A2) invertibility: Rn , 1
n

∑n
t=1 ϕtϕ

T
t is invertible

(A3) regressor growth rate:
∑∞

t=1 ‖ϕt‖4/t2 <∞
(A4) noise moment growth rate:

∑∞
t=1

(
E[w2

t ]
)2
/t2 <∞

(A5) Cesàro summability: lim
n→∞

Rn = R, which is positive definite

Strong Consistency of SPS

P
( ∞⋃

k=1

∞⋂
n=k

{
Θ̂n ⊆ Bε(θ

∗)
})

= 1,

where Bε(θ
∗) , { θ ∈ Rd : ‖θ − θ∗‖ ≤ ε } is a norm ball.

Balázs Csanád Csáji On the Reliability of Regression Models | 24



Ellipsoidal Outer Approximation

The reference paraboloid can be rewritten as

‖S0(θ)‖2 = (θ − θ̂n)TRn(θ − θ̂n).

From which an alternative description of the confidence region is

Θ̂n ⊆
{
θ ∈ Rd : (θ − θ̂n)TRn(θ − θ̂n) ≤ r(θ)

}
,

where r(θ) is the q th largest value of {‖Si (θ)‖2}i 6=0.

Ellipsoidal Outer Approximation

Θ̂n ⊆
{
θ ∈ Rd : (θ − θ̂n)TRn(θ − θ̂n) ≤ r∗

}
The question is of course how to find such an r∗ efficiently.
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Quadratically Constrained Quadratic Program

max{‖Si(θ)‖2 : ‖S0(θ)‖2 ≤ ‖Si(θ)‖2} can be obtained by

maximize ‖z‖2

subject to zTAiz + 2zTbi + ci ≤ 0

Ai , I − R
− 1

2
n QiR

−1
n QiR

− 1
2
T

n ,

bi , R
− 1

2
n QiR

−1
n (ψi − Qi θ̂n),

ci , −ψT
i R
−1
n ψi + 2θ̂Tn QiR

−1
n ψi − θ̂Tn QiR

−1
n Qi θ̂n.

Qi ,
∑n

t=1
αi ,tϕtϕ

T
t , ψi ,

∑n

t=1
αi ,tϕtxt .
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Semi-Definite Program

Problem: the previous QCQP is not convex.

Fortunately, strong duality holds and its dual can be written as:

Dual Problem

minimize γ

subject to λ ≥ 0[
−I + λAi λbi
λbTi λci + γ

]
� 0

where “� 0” denotes that a matrix is positive semidefinite.

Radius r∗ can then be found by solving m − 1 such convex
problems, obtaining {γ∗i }, and defining r∗ the q th largest one.
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Simulation Experiment

Finite Impulse Response (FIR) System (2nd order)

xt = 0.7 ut−1 + 0.3 ut−2 + wt

where {wt} are i.i.d. zero mean Laplacian, with variance 0.1.

The input signal {ut} is given by the autoregression

ut = 0.75 ut−1 + vt ,

where {vt} is a sequence of i.i.d. standard normal variables.

Confidence regions (level 95 %) of SPS, its outer approximation
and the standard asymptotic ellipsoids are compared.
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95% Confidence Regions, n = 25, m = 100, q = 5
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95% Confidence Regions, n = 400, m = 100, q = 5
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Linear Dynamical Systems

Consider systems written using (rational) transfer functions:

General Linear Systems

xt , G (z−1; θ∗) ut + H(z−1; θ∗)wt

(A1) The true system is in the model class, the orders are known.

(A2) The transfer function H(z−1; θ∗) has a (stable) inverse,

as well as G (0; θ∗) = 0 and H(0; θ∗) = 1.

(A3) Noises {wt} are independent and symmetrically distributed.

(A4) Inputs {ut} are observed and independent of {wt}.
(A5) Initialization: for all t ≤ 0, we have xt = wt = ut = 0.
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Prediction Error Estimate

Prediction Error or Residual (for parameter θ)

ε̂t(θ) , H−1(z−1; θ)
(
xt − G (z−1; θ) ut

)
Note that ε̂t(θ

∗) = wt , hence, it is accurate for θ = θ∗.

Prediction Error Estimate (for model class Θ)

θ̂PEM , arg min
θ∈Θ

n∑
t=1

ε̂ 2
t (θ)

In general, there is no closed-form solution for PEM.
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Prediction Error Equation

The PEM estimate can be found, e.g., by using the equation

PEM Equation

∇θV(θ̂PEM | Z) =
n∑

t=1

ψt(θ̂PEM) ε̂t(θ̂PEM) = 0

where ψt(θ) is the negative gradient of the prediction error,

ψt(θ) , −∇θ ε̂t(θ).

These gradients can be directly calculated in terms of the defining
polynomials of the rational transfer functions G and H.
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Perturbed Samples

Perturbed Output Trajectories

x̄t(θ, αi ) , G (z−1; θ) ut + H(z−1; θ) (αi ,t ε̂t(θ))

where {αi ,t} are random signs, as previously.

Recall that ψt(θ) is a linear filtered version of {xt} and {ut},

ψt(θ) = W0(z−1; θ) xt + W1(z−1; θ) ut ,

where W0 and W1 are vector-valued, and ψt(θ) ∈ Rd .

Perturbed (Negative) Gradients

ψ̄t(θ, αi ) , W0(z−1; θ) x̄t(θ, αi ) + W1(z−1; θ) ut
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Sign-Perturbed Sums for General Linear Systems

Reference and Sign-Perturbed Sums

S0(θ) , Ψ
− 1

2
n (θ)

∑n

t=1
ψt(θ) ε̂t(θ)

Si (θ) , Ψ̄
− 1

2
n (θ, αi )

∑n

t=1
ψ̄t(θ, αi )αi ,t ε̂t(θ)

Reference and Sign-Perturbed Covariances

Ψn(θ) ,
1

n

∑n

t=1
ψt(θ)ψT

t (θ)

Ψ̄n(θ, αi ) ,
1

n

∑n

t=1
ψ̄t(θ, αi )ψ̄

T
t (θ, αi )
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Non-Asymptotic Confidence Regions
R(θ) is again the rank of ‖S0(θ)‖2 among {‖Si (θ)‖2} w.r.t. ≺

SPS Confidence Regions for General Linear Systems

Θ̂n ,
{
θ ∈ Rd : R( θ ) ≤ m − q

}

where m > q > 0 are user-chosen (integer) parameters.

We have S0(θ̂PEM) = 0, thus, θ̂PEM ∈ Θ̂n, if it is non-empty.

Exact Confidence of SPS for General Linear Systems

P
(
θ∗ ∈ Θ̂n

)
= 1− q

m

Balázs Csanád Csáji On the Reliability of Regression Models | 36



Simulation Experiment

Autoregressive Moving Average: ARMA(1,1)

xt + a∗xt−1 = wt + c∗wt−1

where θ∗ = (a∗, c∗) and {wt} are i.i.d. standard normal.

The inverse filter of C (z−1; θ)wt = wt + c wt−1 is

C−1(z−1; θ) =
∞∑
k=0

(−1)k ck z−k

Can be used to define the prediction errors for θ = (a, c)

ε̂t(θ) = C−1(z−1; θ) (xt + a xt−1).

Balázs Csanád Csáji On the Reliability of Regression Models | 37



Simulation Experiment

Perturbed Output Trajectories

x̄t(θ, αi ) = −a x̄t−1(θ, αi ) + αi ,t ε̂t(θ) + c αi ,t−1ε̂t−1(θ)

for 1 ≤ i ≤ m and 1 ≤ t ≤ n, where {αi ,t} are random signs.

Perturbed (Negative) Gradients

ψ̄t(θ, αi ) =

[
−C−1(z−1; θ) x̄t(θ, αi )
C−1(z−1; θ)αi ,t ε̂t(θ)

]

which can be used to define the sign-perturbed sums.
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99% Confidence Regions, n = 500, m = 100, q = 1

Figure: “×”: SPS (compl.); “∗”: θ∗; “+”: PEM; “- -”: asymp. ellipsoid
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Closed-Loop General Linear System

Dynamical System: General Linear

Yt , G (z−1; θ∗)Ut + H(z−1; θ∗)Nt

t : (discrete) time, Yt : output, Ut : input, Nt : noise, Rt : reference,
G ,H : transfer functions, z−1 : backward shift, θ∗ : true parameter.

Controller: Closed-Loop with Reference Signal

Ut , L(z−1; η∗)Rt − F (z−1; η∗)Yt

L,F : transfer functions parametrized independently of G ,H.
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Closed-Loop Prediction Error Methods (PEMs)

• SPS can be extended to closed-loop linear systems, to the
direct, indirect and joint input-output approach of PEM.

• The constructed confidence regions remain exact.
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Balázs Csanád Csáji On the Reliability of Regression Models | 41



Extension to GARCH Processes

• Formally, a GARCH(p, q) process, {Xt}, is defined by

Xt , σt εt ,

σ2
t , ω∗ +

p∑
i=1

α∗i X
2
t−i +

q∑
j=1

β∗j σ
2
t−j ,

where {εt} is i.i.d., E[εt ] = 0 and E[ε2
t ] = 1

• θ∗ , (ω∗, α∗1, . . . , α
∗
p, β
∗
1 , . . . , β

∗
q) are nonnegative, ω∗ > 0

• Quasi-maximum likelihood methods typically optimize

`n(θ) ,
1

n

n∑
t=1

[
log σ̂2

t (θ) +
X 2
t

σ̂2
t (θ)

]
,

where σ̂2
t (θ) is the estimated variance process based on θ.
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Extension to GARCH Processes

• The constructed regions are exact and work well on real data.
(Compound retuns on Nasdaq 100, S&P 500 and FTSE 100.)
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Further Extensions

• Instrumental variable methods

• General correlation methods

• Least absolute deviation based methods

• Regularized regression

• Robustness analysis and robustifycation techniques

• Undermodelling detection

• Approximations via interval analysis

• Input perturbation / arbitrary noises

• Robust model predictive control

• Distributed confidence set computation
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Summary

• A finite sample estimation framework was presented.

• Prime example: the SPS (Sign-Perturbed Sums) method.

• It builds confidence regions around the least squares estimate.

• Only mild statistical assumptions are needed, e.g., symmetry.

• Not needed: stationarity, moments, particular distributions.

• For (rational) probabilities, exact confidence sets can be built.

• SPS is strongly consistent, i.e., the confidence regions almost
surely shrink around the true parameter (for lin.reg.).

• SPS is star convex with the LSE as a center (for lin.reg.).

• Efficient ellipsoidal outer approximation exists (for lin.reg.).

• The framework has many extensions, can handle closed-loop
LTI systems, GARCH processes, and LAD and IV methods.
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Thank you for your attention!
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