Data-Driven Confidence Intervals with Optimal Rates for the Mean of Heavy-Tailed Distributions

Ambrus Tamás

Szabolcs Szentpéteri

Balázs Csanád Csáji

Institute for Computer Science and Control (SZTAKI), Hungarian Research Network (HUN-REN), Budapest, Hungary Department of Probability Theory and Statistics, Institute of Mathematics, Eötvös Loránd University (ELTE), Budapest, Hungary

Overview

- *Uncertainty quantification* (UQ) for the mean of symmetric variables.
- Non-asymptotically exact confidence intervals (CIs) for the true expected value.
- The method combines resampling with median-of-means (MoM) estimates.
- *Distribution-free* guarantees are presented.
- Exact (user-chosen) coverage probabilities.
- *Optimal bounds* for the sizes of the CIs under heavy-tailed moment conditions.
- Data-driven method; the construction needs no information about the moments.

Main Assumptions

A1 $Y_1, ..., Y_n \text{ are i.i.d. in } \mathbb{R} \ (\mathcal{D}_0 \doteq \{Y_i\}_{i=1}^n).$

A2 Q_Y is symmetric about μ .

A3 $\mathbb{E}[|Y - \mathbb{E}Y|^{1+a}] = M < \infty \text{ for } a \in (0,1].$

Preliminaries

Let k be an (odd) integer, $n = k\tilde{n}$ and the medianof-means (MoM) estimate defined by

$$\widehat{\mu}(\mathcal{D}_0) \doteq \operatorname{med}\left(\frac{1}{\widetilde{n}}\sum_{i=1}^{\widetilde{n}}Y_i, \dots, \frac{1}{\widetilde{n}}\sum_{i=(k-1)\widetilde{n}+1}^{k\widetilde{n}}Y_i\right).$$

The main advantage of the MoM estimate $\hat{\mu}$ is:

Median-of-Means Estimate

Assume A1, A2 and A3. Let $\delta \in (0,1)$, $k = \lceil 8 \ln(2/\delta) \rceil$ and $n = \tilde{n}k$, then

$$\mathbb{P}\left(|\widehat{\mu} - \mu| > 8\left(\frac{12M^{1/a}\ln(1/\delta)}{n}\right)^{\frac{a}{1+a}}\right) \leq \delta.$$

Moreover, the rate is optimal w.r.t. δ and n.

Resampled Median-of-Means

Let us consider the following hypotheses:

$$H_0: \mu = \theta \text{ and } H_1: \mu \neq \theta.$$

Let p denote the significance level and r, m be integers s.t. p = r/m. Let $\{\alpha_{i,j}\}$ be i.i.d. Rademacher variables for $i \in [n]$ and $j \in [m-1]$.

Hypothesis Test (for $\mu = \theta$)

 \bullet Construct m-1 alternative datasets

$$\mathcal{D}_{j}(\theta) \doteq \{\alpha_{1,j}(Y_{1}-\theta)+\theta, \dots, \alpha_{n,j}(Y_{n}-\theta)+\theta\}$$

for $j \in [m-1]$ and $\mathcal{D}_{0}(\theta) \doteq \mathcal{D}_{0}$.

Compute the reference variables

 $S_j(\theta) \doteq |\widehat{\mu}(\mathcal{D}_j(\theta)) - \theta| \text{ for } j \in [m-1]_0.$

3 Compute the rank $\mathcal{R}(\theta)$ according to

$$\mathcal{R}(\theta) \doteq 1 + \sum_{i=1}^{m-1} \mathbb{I}(S_0(\theta) \succ_{\pi} S_j(\theta)),$$

• Reject H_0 if and only if $\mathcal{R}(\theta) > m - r$.

Key Observations

If $\theta = \mu$, then $\{S_j(\theta)\}_{j=0}^{m-1}$ are exchangeable, however, if θ is "far" from μ , then $S_0(\theta)$ should be greater than $S_j(\theta)$.

The proposed hypothesis test provides *exact*, *non-asymptotic* and *distribution-free* guarantees:

Type I Error Probability

Assume A1 and A2, then for every $1 \le r < m$ $\mathbb{P}\left(\mathcal{R}(\mu) > m - r\right) = r/m.$

The hypothesis test is completely *data-driven*, i.e., the algorithm does not need moment information.

Confidence Intervals

We include those parameters in the confidence set that are accepted by the presented hypothesis test.

$$\Theta_n \doteq \{ \theta : \mathcal{R}(\theta) \le m - r \}$$

Note that we do not need to generate random signs for each θ , the same set of signs can be used. Under A1 and A2, Θ_n is an *exact* confidence set for μ , i.e.,

$$\mathbb{P}(\mu \in \Theta_n) = 1 - r/m.$$

An important consequence of the construction is that Θ_n admits the special form of

$$\Theta_n = \bigcup_{\substack{J \subseteq [m-1], j \in J \\ |J| = m-r}} \left\{ \theta : S_0(\theta) \prec_{\pi} S_j(\theta) \right\},$$

thus Θ_n is an interval that contains $\widehat{\mu}(\mathcal{D}_0)$, if $\Theta_n \neq \emptyset$. We can compute the endpoints efficiently. An illustrative example of the CI construction for m=2 and k=3 is presented in Figure 1.

Shrinkage Rate

Let us consider the diameter of Θ_n

$$d(\Theta_n) \doteq \sup\{ |\theta_1 - \theta_2| : \theta_1, \theta_2 \in \Theta \}.$$

Our main *non-asymptotic* and *distribution-free* result about the shrinkage rate of Θ_n is:

Main Result

Assume A1, A2 and A3. Let r < m be user-chosen integers, $\delta > 0$, $k = \lceil 8 \ln(20(m-r)/\delta) \rceil$, then for $n \ge k(k+8\ln(k))$ we have

$$\mathbb{P}\left(d(\Theta_n) > 8\left(\frac{12M^{1/a}\ln\left(\frac{10(m-r)}{\delta}\right)}{n}\right)^{\frac{a}{1+a}}\right) \le \delta.$$

Multivariate Extension

A4 $Y - \mu \stackrel{d}{=} \mu - Y$, for some vector $\mu \in \mathbb{R}^q$.

 $A5 \Sigma \doteq \mathbb{E}[(Y - \mathbb{E}Y)(Y - \mathbb{E}Y)^{\mathrm{T}}] exists.$

For $\theta \in \mathbb{R}^q$ let us consider

 $H_0: \mu = \theta \text{ and } H_1: \mu \neq \theta.$

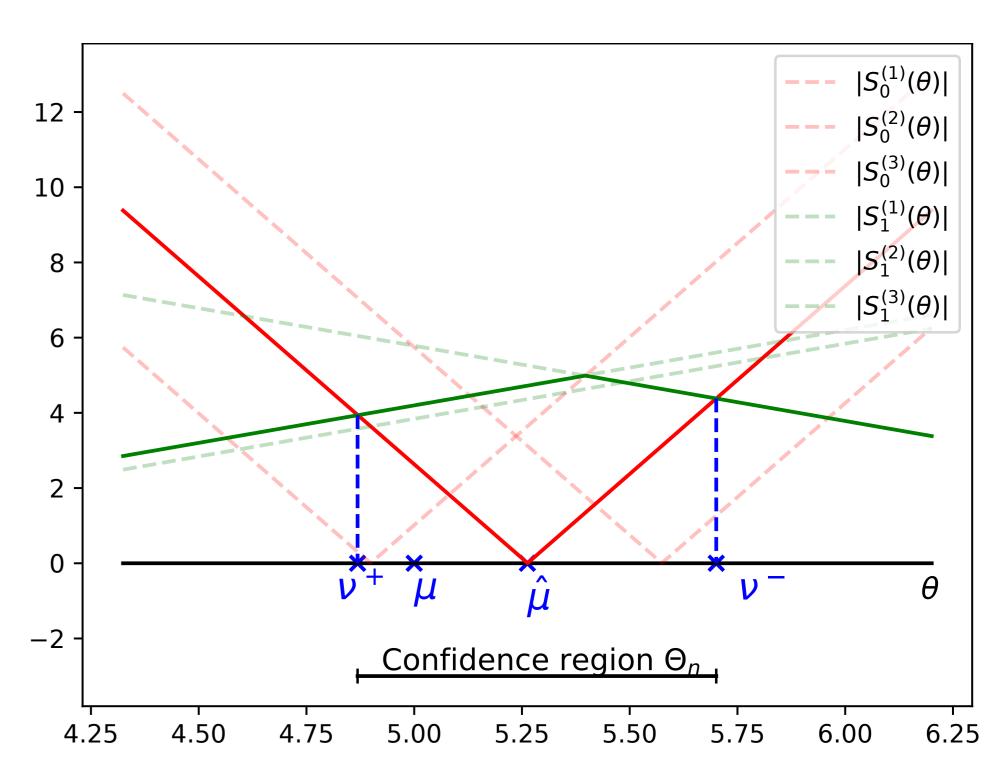


Figure 1: 50% confidence interval, m=2, n=30 and k=3.

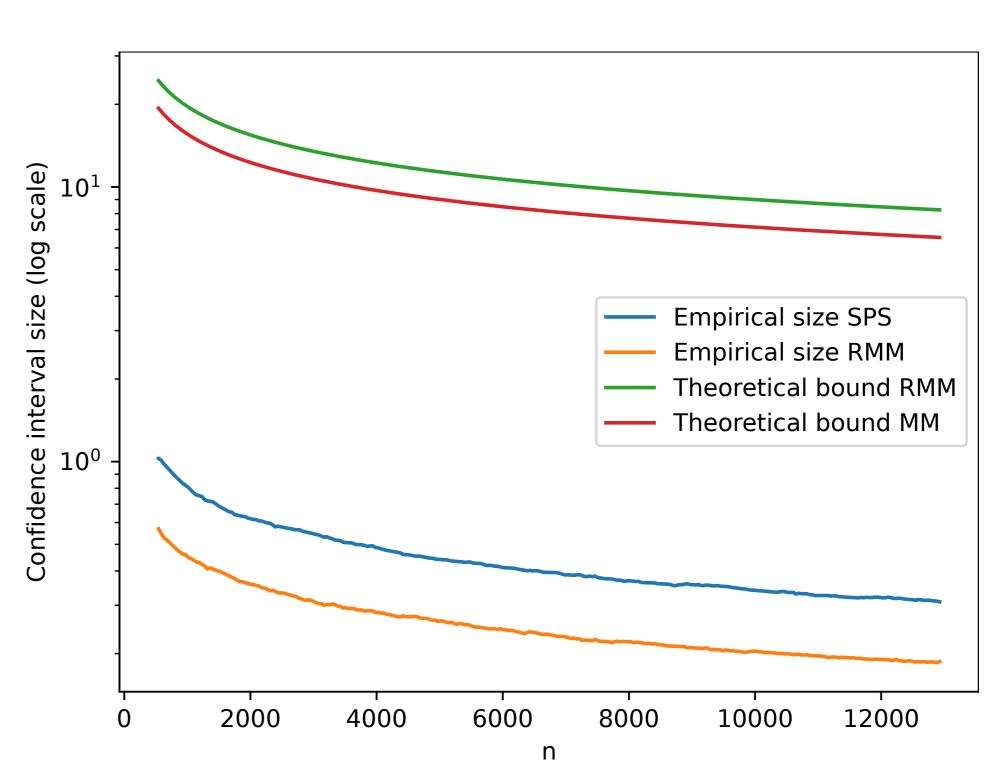


Figure 2: Comparison of confidence interval sizes.

Let $\tilde{\mu}$ be a subgaussian mean estimator, i.e., there exist $c_1, c_2, c_3 > 0$ such that for every $\delta > 0$:

$$\mathbb{P}\left(\|\tilde{\mu} - \mu\| > \sqrt{\frac{c_1 \operatorname{Tr}(\Sigma)}{n}} + \sqrt{\frac{c_2 \lambda^* \ln(c_3/\delta)}{n}}\right) \leq \delta.$$

The MoM tournament estimator and its polynomial time relaxation are in the subgaussian regime.

The multivariate alternative datasets are

$$\mathcal{D}_j(\theta) \doteq \{\alpha_{i,j} \mathbb{1} \odot (Y_1 - \theta) + \theta\}_{i=1}^n,$$

where \odot denotes the Hadamard (element-wise) product and the reference variable functions

$$S_j(\theta) \doteq \| \tilde{\mu}(\mathcal{D}_j(\theta)) - \theta \| \text{ for } j \in [m-1]_0.$$

Type II Error Rate

Assume A1, A4, and A5 Let $\delta > 0$ and r < m be user-chosen integers. For $\theta \neq \mu$ if

$$\sqrt{\frac{c_1(T+\Delta^2)}{n}} + \sqrt{\frac{c_2(\lambda^* + \Delta^2) \ln\left(\frac{c_3(m-r)}{\delta}\right)}{n}} < \frac{\Delta}{2},$$
with $T = \text{Tr}(\Sigma)$ holds for $\Delta \doteq \|\theta - \mu\|$, then
$$\mathbb{P}(\mathcal{R}(\theta) > m-r) \geq 1 - \delta.$$

Future research directions include applications to robust optimization and multiarmed bandits.

Contact Information

Email: tamasamb@sztaki.hu (Ambrus Tamás)
Website: http://www.sztaki.hu/~tamas-ambrus/