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Abstract— Sign-Perturbed Sums (SPS) is a recently developed
non-asymptotic system identification algorithm that constructs
confidence regions for parameters of dynamical systems. It
works under mild statistical assumptions, such as symmetric
and independent noise terms. The SPS confidence region
includes the least-squares estimate, and, for any finite sample
and user-chosen confidence probability, the constructed region
contains the true system parameter with exactly the given
probability. The main contribution in this paper is to prove
that SPS is strongly consistent, in case of linear regression based
models, in the sense that any false parameter will almost surely
be excluded from the confidence region as the sample size tends
to infinity. The asymptotic behavior of the confidence regions
constructed by SPS is also illustrated by numerical experiments.

I. INTRODUCTION

Mathematical models of dynamical systems are of
widespread use in many fields of science, engineering and
economics. Such models are often obtained using system
identification techniques, that is, the models are estimated
from observed data. There will always be uncertainty asso-
ciated with models of dynamical systems, and an important
problem is the uncertainty evaluation of models.

Previously, the Sign-Perturbed Sums (SPS) algorithm was
introduced for linear systems [1], [2], [3], [4], [8]. The main
feature of the SPS method is that it constructs a confidence
region which has an exact probability of containing the true
system parameter based on a finite number of observed data.
Moreover, the least-squares estimate of the true parameter
belongs to the confidence region. In contrast with asymptotic
theory of system identification, e.g., [5], which only delivers
confidence ellipsoids that are guaranteed asymptotically as
the number of data points tends to infinity, the SPS regions
are guaranteed for any finite number of data points.

Although the main draw card of SPS is the finite sample
properties, the asymptotic properties are also of interests.
One of the fundamental asymptotic properties a confidence
region construction can have is consistency [6], which indi-
cate that false parameter values will eventually be “filtered
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out” as we have more and more data. In this paper we show
that SPS is in fact strongly consistent, i.e., the SPS confi-
dence region shrinks around the true parameter as the sample
size increases and, asymptotically, any false parameter will
almost surely be excluded from the confidence region.

Besides the theoretical analysis, we also include a sim-
ulation example which illustrates the behavior of the SPS
confidence region as the number of data points increases.

The paper is organized as follows. In the next sec-
tion we briefly summarize the problem setting, our main
assumptions, the SPS algorithm and its ellipsoidal outer-
approximation. The strong consistency results are given in
Section III, and they are illustrated on a simulation example
in Section IV. The proofs can be found in the appendices.

II. THE SIGN-PERTURBED SUMS METHOD

We start by briefly summarizing the SPS method for linear
regression problems. For more details, see [2], [3], [8].

A. Problem Setting

The data is generated by the following system

Yt , φT
t θ

∗ +Nt,

where Yt is the output, Nt is the noise, φt is the regressor,
θ∗ is the unknown true parameter and t is the time index.
Yt and Nt are scalars, while φt and θ∗ are d dimensional
vectors. We consider a sample of size n which consists of
the regressors φ1, . . . , φn and the outputs Y1, . . . , Yn. We
aim at building a guaranteed confidence region for θ∗.

B. Main Assumptions

The assumptions on the noise and the regressors are

A1 {Nt} is a sequence of independent random variables.
Each Nt has a symmetric probability distribution about
zero, i.e., Nt and −Nt has the same distribution.

A2 Each regressor, φt, is deterministic and

Rn , 1

n

n∑
t=1

φtφ
T
t .

is non-singular.

Note the weak assumptions, e.g., the noise terms can be
nonstationary with unknown distributions and there are no
moment or density requirements either. The symmetry as-
sumption is also mild, as many standard distributions, includ-
ing Gaussian, Laplace, Cauchy-Lorentz, Bernoulli, Binomial,
Students t, logistic and uniform satisfy this property.
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The restriction on the regressor vectors allow dynamical
systems, for example, with transfer functions

G(z, θ∗) =

d∑
k=1

θ∗k Lk(z, β),

where z is the shift operator and {Lk(z, β)} is a function
expansion with a (fixed) user-chosen parameter β. The re-
gressors in this case are φt = [L1(z, β)ut, . . . , Ld(z, β)ut ],
where {ut} is an input signal. Using Lk(z, β) = z−k corre-
sponds to the standard FIR model, while more sophisticated
choices include Laguerre-, and Kautz basis functions [5], [7],
which are often used to model (or approximate) systems with
slowly decaying impulse responses

C. Intuitive Idea of SPS

We note that the least-squares estimate of θ∗ is given by

θ̂n , argmin
θ∈Rd

n∑
t=1

(Yt − φT
t θ)

2.

which can be found by solving the normal equation, i.e.,
n∑

t=1

φt(Yt − φT
t θ) = 0,

The main building block of the SPS algorithm is, as its
name suggests, m− 1 sign-perturbed versions of the normal
equation (which are also normalized by 1

nR
−1/2
n ). More

precisely, the sign-perturbed sums are defined as follows

Si(θ) , R
− 1

2
n

1

n

n∑
t=1

φtαi,t(Yt − φT
t θ),

i ∈ {1, . . . ,m− 1}, and a reference sum is given by

S0(θ) , R
− 1

2
n

1

n

n∑
t=1

φt(Yt − φT
t θ).

Here R
1
2
n is such that Rn = R

1
2
nR

1
2T
n , and α , {αi,t} are

independent and identically distributed (i.i.d.) Rademacher
variables, i.e., they take ±1 with probability 1/2 each.

A key observation is that for θ = θ∗

S0(θ
∗) = R

− 1
2

n
1

n

n∑
t=1

φtNt,

Si(θ
∗) = R

− 1
2

n
1

n

n∑
t=1

αi,tφtNt = R
− 1

2
n

1

n

n∑
t=1

±φtNt.

As {Nt} are independent and symmetric, there is no reason
why ||S0(θ

∗)||2 should be bigger or smaller than any another
||Si(θ

∗)||2 and this is utilized by SPS by excluding those
values of θ for which ||S0(θ)||2 is among the q largest ones,
and as stated below, the so constructed confidence set has
exact probability 1− q/m of containing the true parameter.
It can also be noted that when θ−θ∗ is large, ||S0(θ)||2 tends
to be the largest one of the m functions, such that values far
away from θ∗ are excluded from the confidence set.

PSEUDOCODE: SPS-INITIALIZATION

1. Given a confidence probability p ∈ (0, 1),

set integers m > q > 0 such that p = 1− q/m;

2. Calculate the

Rn , 1
n

n∑
t=1

φtφ
T
t ;

and find a factor R1/2
n such that

R
1/2
n R

1/2T
n = Rn;

3. Generate n (m− 1) i.i.d. random signs {αi,t} with

P(αi,t = 1) = P(αi,t = −1) = 1
2 ,

for i ∈ {1, . . . ,m− 1} and t ∈ {1, . . . , n};

4. Generate a random permutation π of the set

{0, . . . ,m− 1}, where each of the m! permutations

has the same probability 1/(m!) to be selected.

TABLE I

PSEUDOCODE: ISPS(θ) ∼ SPS-INDICATOR ( θ )

1. For the given θ evaluate

S0(θ) , R
− 1

2
n

1
n

n∑
t=1

φt(Yt − φT
t θ),

Si(θ) , R
− 1

2
n

1
n

n∑
t=1

αi,t φt(Yt − φT
t θ),

for i ∈ {1, . . . ,m− 1};

2. Order scalars {∥Si(θ)∥2} according to ≻π;

3. Compute the rank R(θ) of ∥S0(θ)∥2 in the

ordering, where R(θ) = 1 if ∥S0(θ)∥2 is the

smallest in the ordering, R(θ) = 2 if ∥S0(θ)∥2

is the second smallest, and so on;

4. Return 1 if R(θ) ≤ m− q, otherwise return 0.

TABLE II

D. Formal Construction of the SPS Confidence Region
The pseudocode of the SPS algorithm is presented in

two parts. The initialization (Table I) sets the main global
parameters and generates the random objects needed for
the construction. In the initialization, the user provides the
desired confidence probability p. The second part (Table II)
evaluates an indicator function, ISPS(θ), which determines if
a particular parameter θ belongs to the confidence region.

The permutation π generated in the initialization defines a
strict total order ≻π which is used to break ties in case two
||Si(θ)||2 functions take on the same value. Given m scalars
Z0, . . . , Zm−1, relation ≻π is defined by

Zk ≻π Zj if and only if

(Zk > Zj ) or (Zk = Zj and π(k) > π(j) ) .

The p-level SPS confidence region is given by

Θ̂n ,
{
θ ∈ Rd : ISPS(θ) = 1

}
.
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Note that the least-squares estimate (LSE), θ̂n, has the
property that S0(θ̂n) = 0. Therefore, the LSE is included in
the SPS confidence region, assuming that it is non-empty.

As was shown1 in [2], the most important property of
the SPS method is that the constructed confidence region
contains θ∗ with exact probability p, more precisely

Theorem 1: Assuming A1 and A2, the confidence proba-
bility of the constructed SPS region is exactly p, that is,

P
(
θ∗ ∈ Θ̂n

)
= 1− q

m
= p.

Since the confidence probability is exact, no conservatism is
introduced, despite the mild statistical assumptions.

E. Ellipsoidal Outer-Approximation

Given a particular value of θ, it is easy to check whether θ
is in the confidence region, i.e., we simply need to evaluate
the indicator function at θ. Hence, SPS is well suited to
problems where only a finite number of θ values need to be
checked. This is, e.g., the case in some hypothesis testing
and fault detection problems. On the other hand, it can
be computationally demanding to construct the boundary of
the region. E.g. evaluating the indicator function on a grid,
suffers from the “curse of dimensionality”. Now we briefly
recall an approximation algorithm for SPS, suggested in [8],
which can be efficiently computed and offers a compact
representation in the form of ellipsoidal over-bounds.

After some manipulations [8] we can write ∥S0(θ)∥2 as

∥S0(θ)∥2 = (θ − θ̂n)
TRn(θ − θ̂n),

thus, the SPS region is given by those values of θ that satisfy

Θ̂n =
{
θ ∈ Rd : (θ − θ̂n)

TRn(θ − θ̂n) ≤ r(θ)
}
,

where r(θ) is the qth largest value of the functions ∥Si(θ)∥2,
i ∈ {1, . . . ,m− 1}. The idea is now to seek an over-bound
by replacing r(θ) with a θ independent r, i.e.,

Θ̂n ⊆
{
θ ∈ Rd : (θ − θ̂n)

TRn(θ − θ̂n) ≤ r
}
.

This outer-approximation will have the same shape and
orientation as the standard asymptotic confidence ellipsoid
[5], but it will have a different volume.

F. Convex Programming Formulation

In [8] it was show that such an ellipsoidal over-bound can
be constructed (Table III) by solving m−1 convex optimiza-
tion problems. More precisely, if we compare ∥S0(θ)∥2 with
one single ∥Si(θ)∥2 function, we have

{ θ : ∥S0(θ)∥2 ≤ ∥Si(θ)∥2 }
⊆ { θ : ∥S0(θ)∥2 ≤ max

θ:∥S0(θ)∥2≤∥Si(θ)∥2
∥S0(θ)∥2 }.

1Theorem 1 was originally proved using a slightly different tie-breaking
approach, however, this does not affect the confidence probability.

PSEUDOCODE: SPS-OUTER-APPROXIMATION

1. Compute the least-squares estimate,

θ̂n = R−1
n

[
1
n

n∑
t=1

φtYt

]
;

2. For i ∈ {1, . . . ,m− 1}, solve the optimization

problem (1), and let γ∗i be the optimal value;

3. Let rn be the q th largest γ∗i value;

4. The outer approximation of the SPS confidence

region is given by the ellipsoid̂̂Θn =
{
θ ∈ Rd : (θ − θ̂n)

TRn(θ − θ̂n) ≤ rn
}

.

TABLE III

The maximization on the right-hand side generally leads to
a nonconvex problem, however, its dual is convex and strong
duality holds [8]. Hence, it can be computed by

minimize γ

subject to λ ≥ 0[
−I + λAi λbi
λbTi λci + γ

]
≽ 0, (1)

where relation “≽ 0” denotes that a matrix is positive
semidefinite and Ai, bi and ci are defined as follows

Ai , I −R
− 1

2
n QiR

−1
n QiR

− 1
2T

n ,

bi , R
− 1

2
n QiR

−1
n (ψi −Qiθ̂n),

ci , −ψT
i R

−1
n ψi + 2θ̂TnQiR

−1
n ψi − θ̂TnQiR

−1
n Qiθ̂n,

Qi , 1

n

n∑
t=1

αi,tφtφ
T
t ,

ψi , 1

n

n∑
t=1

αi,tφtYt.

Letting γ∗i be the value of program (1), we now have{
θ : ∥S0(θ)∥2 ≤ ∥Si(θ)∥2

}
⊆

{
θ : ∥S0(θ)∥2 ≤ γ∗i

}
.

Consequently, an outer approximation can be constructed by

Θ̂n ⊆ ̂̂Θn ,
{
θ ∈ Rd : (θ − θ̂n)

TRn(θ − θ̂n) ≤ rn

}
,

where rn = q th largest value of γ∗i , i ∈ {1, . . . ,m− 1}.̂̂Θn is an ellipsoidal over-bound and it is also clear that

P
(
θ∗ ∈ ̂̂Θn

)
≥ 1− q

m
= p,

for any finite n. Hence, the confidence ellipsoids based on
SPS are rigorously guaranteed for finite samples, even though
the noise may be nonstaionary with unknown distributions.

III. STRONG CONSISTENCY

In addition to the probability of containing the true param-
eter, another important aspect is the size of the confidence
set. While for a finite sample this generally depends on the
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characteristics of the noise, here we show that (asymptoti-
cally) the SPS algorithm is strongly consistent in the sense
that its confidence regions shrink around the true parameter,
as the sample size increases, and eventually exclude any
other parameters θ′ ̸= θ∗ with probability one.

We will use the following additional assumptions:

A3 There exists a positive definite matrix R such that

lim
n→∞

Rn = R.

A4 (regressor growth rate restriction)

∞∑
t=1

∥φt∥4

t2
<∞.

A5 (noise variance growth rate restriction)

∞∑
t=1

(E[N2
t ])

2

t2
<∞.

In the theorem below, Bε(θ
∗) denotes the usual norm-ball

centered at θ∗ with radius ε > 0, i.e.,

Bε(θ
∗) , { θ ∈ Rd : ∥ θ − θ∗∥ ≤ ε }.

Theorem 2 states that the confidence regions {Θ̂n} even-
tually (almost surely) will be included in any norm-ball
centered at θ∗ as the sample size increases.

Theorem 2: Assuming A1, A2, A3, A4 and A5 : ∀ ε > 0,
there exists (a.s.) an N , such that ∀n > N : Θ̂n ⊆ Bε(θ

∗).

The proof of Theorem 2 can be found in Appendix I. N =
N(ω), that is, the actual sample size for which the confidence
regions will remain inside an ε norm-ball around the true
parameter depends on the noise realization.

Note that also for this asymptotic result, the noise terms
can be nonstationary and their variances can grow to infinity,
as long as their growth-rate satisfy condition A5. Also, the
magnitude of the regressors can grow without bound, as long
as it does not grow too fast, as controlled by A4.

Based on the proof, we can also conclude that

Corollary 3: Under the assumptions of Theorem 2, the
radii, {rn}, of the ellipsoidal outer-approximations, { ̂̂Θn},
almost surely converge to zero as n→ ∞.

The proof sketch of this claim is given in Appendix II. Note
that we already know [5] that the centers of the ellipsoidal
over-bounds, {θ̂n}, i.e., the LSEs, converge (a.s.) to θ∗.

IV. SIMULATION EXAMPLE

In this section we illustrate with simulations the asymp-
totic behavior of SPS and its ellipsoidal over-bound.

A. Second Order FIR System

We consider the following second order FIR system

Yt = b∗1Ut−1 + b∗2Ut−2 +Nt,

where b∗1 = 0.7 and b∗2 = 0.3 are the true system parameters
and {Nt} is a sequence of i.i.d. Laplacian random variables
with zero mean and variance 0.1. The input signal is

Ut = 0.75Ut−1 +Wt,

where {Wt} is a sequence i.i.d. Gaussian random variables
with zero mean and variance 1. The predictors are given by

Ŷt(θ) = b1Ut−1 + b2Ut−2 = φT
t θ,

where θ = [ b1, b2 ]
T is the model parameter (vector), and

φt = [Ut−1, Ut−2 ]
T is the regressor vector.

Initially we construct a 95% confidence region for θ∗ =
[b∗1, b

∗
2]

T based on n = 25 data points, namely, (Yt, φt) =
(Yt, [Ut−1, Ut−2 ]

T), t ∈ {1, . . . , 25}.
We compute the shaping matrix

R25 =
1

25

25∑
t=1

[
Ut−1

Ut−2

]
[Ut−1 Ut−2] ,

and find a factor R
1
2
25 such that R

1
2
25R

1
2T
25 = R25. Then, we

compute the reference sum

S0(θ) = R
− 1

2
25

1

25

25∑
t=1

[
Ut−1

Ut−2

]
(Yt − b1Ut−1 − b2Ut−2),

and using m = 100 and q = 5, we compute the 99 sign
perturbed sums, i ∈ {1, . . . , 99}

Si(θ) = R
− 1

2
25

1

25

25∑
t=1

[
Ut−1

Ut−2

]
αi,t(Yt − b1Ut−1 − b2Ut−2),

where αi,t are i.i.d. random signs. The confidence region is
constructed as the values of θ for which at least q = 5 of
the {||Si(θ)||2}, i ̸= 0, functions are larger (w.r.t. ≻π) than
||S0(θ)||2. It follows from Theorem 1 that the confidence
region constructed by SPS contains the true parameter with
exact probability 1− 5

100 = 0.95.
The SPS confidence region is shown in Figure 1 together

with the approximate confidence ellipsod based on asymp-
totic system identification theory (with the noise variance
estimated as σ̂2 = 1

23

∑25
t=1(Yt − φT

t θ̂n)
2).

It can be observed that the non-asymptotic SPS regions
are similar in size and shape to the asymptotic confidence
regions, but have the advantage that they are guaranteed to
contain the true parameter with exact probability 0.95.

Next, the number of data points were increased to n =
400, still with q = 5 and m = 100, and the confidence
regions in Figure 2 were obtained.. As can be seen, the SPS
confidence region concentrates around the true parameter as
n increases. This is further illustrated in Figure 3 where the
number of data points has been increase to 6400. Now, there
is very little difference between the SPS confidence region,
its outer approximation and the confidence ellipsoid based
on asymptotic theory demonstrating the convergence result.
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Fig. 1. 95% confidence regions, n = 25, m = 100, q = 5.
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Fig. 2. 95% confidence regions, n = 400, m = 100, q = 5.
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0.3

0.305

0.31

0.315
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b1

b2

 

 
True value
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Asymptotic
SPS
SPS outer approximation

Fig. 3. 95% confidence regions, n = 6400, m = 100, q = 5.

V. SUMMARY AND CONCLUSION

In this paper we have proved that SPS is strongly consis-
tent in the sense that the confidence regions become smaller
and smaller as the number of data points increases, and
any false parameter values will eventually be excluded from
the SPS confidence region, with probability one. We have
also shown that a similar claim is valid for the previously
proposed ellipsoidal outer-approximation algorithm. These
results were illustrated by simulation studies, as well. The
findings support that in addition to the attractive finite
sample property, i.e., the exact confidence probability, the
SPS method has also very desirable asymptotic properties.
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APPENDIX I
PROOF OF THEOREM 2: STRONG CONSISTENCY

We will prove that for any fixed (constant) θ′ ̸= θ∗,
∥S0(θ

′)∥2 a.s.−→ (θ∗−θ′)TR(θ∗−θ′), which is larger than zero
(using the strict positive definiteness of R, i.e., A3), while
for i ̸= 0, ∥Si(θ

′)∥2 a.s.−→ 0, as n → ∞. This implies that,
in the limit, ∥S0(θ

′)∥2 will be the very last element in the
ordering, and therefore θ′ will be (almost surely) excluded
from the confidence region as n→ ∞.

Using the notation θ̃ , θ∗ − θ′, S0(θ
′) can be written as

S0(θ
′) = R

− 1
2

n
1

n

n∑
t=1

φt(Yt − φT
t θ

′) =

= R
− 1

2
n

1

n

n∑
t=1

φtφ
T
t θ̃ +R

− 1
2

n
1

n

n∑
t=1

φtNt.

The two terms will be analyzed separately.
The convergence of the first term follows immediately

from our assumptions on the regressors (A3) and by ob-
serving that (·) 1

2 is a continuous matrix function. Thus,

R
− 1

2
n

1

n

n∑
t=1

φtφ
T
t θ̃ = R

1
2
n θ̃

a.s.−→ R
1
2 θ̃, as n→ ∞
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The convergence of the second term follows from the
component-wise application of the strong law of large num-
bers. First, note that {R− 1

2
n } is a convergent sequence, hence

it is enough to prove that the other part of the product
converges to zero (a.s.). The Kolmogorov’s condition holds
since by using the Cauchy-Schwarz inequality and A4, A5,

∞∑
t=1

E[φ2
t,kN

2
t ]

t2
≤

∞∑
t=1

∥φt∥2

t

E[N2
t ]

t
≤

≤

√√√√ ∞∑
t=1

∥φt∥4
t2

√√√√ ∞∑
t=1

E[N2
t ]

2

t2
<∞

Consequently, from Kolmogorov’s strong law of large num-
bers (SLLN) for independent variables, we have

R
− 1

2
n

1

n

n∑
t=1

φtNt
a.s.−→ 0, as n→ ∞

Combining the two results, we get that

∥S0(θ
′)∥2 a.s.−→ (θ∗ − θ′)TR(θ∗ − θ′) = θ̃TR θ̃ > 0.

Now, we investigate the asymptotic behavior of Si(θ
′),

Si(θ
′) = R

− 1
2

n
1

n

n∑
t=1

φtαi,t(Yt − φT
t θ

′) =

= R
− 1

2
n

1

n

n∑
t=1

αi,t φtφ
T
t θ̃ +R

− 1
2

n
1

n

n∑
t=1

αi,t φtNt.

We will again analyze the asymptotic behavior of the two
terms separately. The convergence of the second term follows
immediately from our previous argument, since the variance
of αi,t φtNt is the same as the variance of φtNt. Thus,

R
− 1

2
n

1

n

n∑
t=1

αi,t φtNt
a.s.−→ 0, as n→ ∞,

For the first term, since {R− 1
2

n } is convergent and θ̃ is
constant, it is sufficient to show the (a.s.) convergence of
1
n

∑n
t=1 αi,t [φtφ

T
t ]j,k to 0 for each j and k. From A4,

∞∑
t=1

E[α2
i,t [φtφ

T
t ]

2
j,k]

t2
=

∞∑
t=1

φ2
t,jφ

2
t,k

t2
≤

∞∑
t=1

∥φt∥4

t2
< ∞

Therefore, the Kolmogorov’s condition holds, and

R
− 1

2
n

1

n

n∑
t=1

αi,t φtφ
T
t θ̃

a.s.−→ 0, as n→ ∞

Now, we show that ∥S0(θ
′)∥2 a.s.−→ (θ∗ − θ′)TR(θ∗ − θ′)

and ∥Si(θ
′)∥2 a.s.−→ 0, i ̸= 0, implies that eventually the

confidence region will (a.s.) be contained in a ball of radius
ε around the true parameter, θ∗, for any ε > 0.

Let (Ω,F ,P) denote the underlying probability space,
where Ω is the sample space, F is the σ-algebra of events,
and P is the probability measure. Then, there is an event
F0 ∈ F , such that P(F0) = 1 and for all ω ∈ F0, for each
i, including i = 0, the functions ∥Si(θ

′)∥2 converges.

Introduce the following notations:

Γi,n , 1

n

n∑
t=1

αi,t φtφ
T
t ,

γi,n , 1

n

n∑
t=1

αi,t φtNt,

ψn , 1

n

n∑
t=1

φtNt.

Fix an ω ∈ F0. For each δ > 0, there is an N(ω) > 0,
such that for n ≥ N(ω) (for all i ̸= 0),

∥R
1
2
n −R

1
2 ∥ ≤ δ, ∥R− 1

2
n ψn(ω)∥ ≤ δ,

∥R− 1
2

n Γi,n(ω)∥ ≤ δ, ∥R− 1
2

n γi,n(ω)∥ ≤ δ,

by using the earlier results, where ∥ · ∥ denotes the spectral
norm (if its argument is a matrix), i.e., the matrix norm
induced by the Euclidean vector norm.

Assume that n ≥ N(ω), then

∥S0(θ
′)(ω)∥ = ∥R

1
2
n θ̃ +R

− 1
2

n ψn(ω)∥ =

= ∥(R
1
2
n −R

1
2 )θ̃ +R

1
2 θ̃ +R

− 1
2

n ψn(ω)∥ ≥

λmin(R
1
2 )∥θ̃∥ − δ∥θ̃∥ − δ,

where λmin(·) denotes the smallest eigenvalue. On the other
hand, we also have

∥Si(θ
′)(ω)∥ = ∥R− 1

2
n Γi,n(ω)θ̃ +R

− 1
2

n γi,n(ω)∥ ≤

≤ ∥R− 1
2

n Γi,n(ω)∥∥θ̃∥+ ∥R− 1
2

n γi,n(ω)∥ ≤ δ∥θ̃∥+ δ

We have ∥Si(θ
′)(ω)∥ < ∥S0(θ

′)(ω)∥ for all θ′ that satisfy

δ∥θ̃∥+ δ < λmin(R
1
2 )∥θ̃∥ − δ∥θ̃∥ − δ,

which after rearrangement reads

κ0(δ) , 2 δ

λmin(R
1
2 )− 2 δ

< ∥θ̃∥,

therefore, those θ′ vectors for which κ0(δ) < ∥θ∗ − θ′∥
are not included in the confidence region Θ̂n(ω), for n ≥
N(ω). Finally, setting δ := (ε λmin(R

1
2 ))/(2 + 2ε) proves

the statement of the theorem for a given ε > 0. �

APPENDIX II
PROOF SKETCH OF COROLLARY 3

It is enough to show that ∀ i ∈ {1, . . . ,m− 1}: γ∗i
a.s.−→ 0,

as n → ∞, where γ∗i = maxθ:∥S0(θ)∥2≤∥Si(θ)∥2 ∥S0(θ)∥2,
since this implies that rn

a.s.−→ 0, where {rn} are the radii.
It was shown above that ∥S0(θ

′)∥2 > ∥Si(θ
′)∥2 (a.s.),

for sufficiently large n and any θ′ ̸= θ∗. Then, we can also
show that for ∀ ε > 0, γ∗i is eventually (a.s.) bounded by
supθ:∥θ−θ∗∥<ε ∥S0(θ)∥2 which eventually will be bounded
by supθ:∥θ−θ̂n∥<2ε ∥S0(θ)∥2 since θ̂n

a.s.−→ θ∗. This bound
tends to zero, as ε→ 0, since ∥S0(θ̂n)∥2 = 0, for all n, and
∥S0(θ)∥2 is continuous w.r.t. θ. Thus, we have γ∗i

a.s.−→ 0. �
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