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Stochastic Approximation

Stochastic Approximation (SA)

θn+1︸︷︷︸
next

estimate

.
= θn︸︷︷︸

current
estimate

+ γn︸︷︷︸
learning

rate

H
(
θn,Xn+1

)︸ ︷︷ ︸
update

operator

◦ θn ∈ Rd is the estimate at time n.

◦ γn ∈ [ 0,∞) is the step-size or learning rate at time n.

◦ Xn ∈ Rk is the new data available at time n.

◦ H : Rd × Rk → Rd is the update operator.

(Note: {θn}, {Xn} are random vectors; {γn} are random scalars.)
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Part I: Inhomogeneity
Reinforcement Learning in

Time-Varying Environments

Joint work with: László Monostori (SZTAKI)
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Reinforcement Learning

– Reinforcement learning (RL) is a machine learning approach to learn
from interactions with an environment based on feedbacks (e.g., rewards).

– An interpretation: consider an agent acting in an uncertain environment
and receiving information about the actual states and immediate costs.

– The aim is to learn an efficient behavior (control policy), such that
applying this strategy minimizes the expected costs in the long run.
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Applications of Reinforcement Learning

– Robot Control – Web System Configuration

– Dispatching & Scheduling – Bidding and Advertising

– Optimal Stopping – Traffic Light Control

– Routing – Logic Games

– Maintenance and Repair – Communication Networks

– Recommender Systems – Dynamic Channel Allocation

– Inventory Control – Power Grid Management

– Optimal Control of Queues – Supply-Chain Management

– Strategic Asset Pricing – Fault Detection

– Dynamic Options – Sequential Clinical Trials

– Insurance Risk Management – PageRank Optimization
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Markov Decision Processes

A (finite) Markov Decision Process (MDP) is characterized by

1. X is a (finite, non-empty) state space;

2. A is a (finite, non-empty) action space;

3. A : X→ P(A) is an action constraint function, namely,
A(x) is the (non-empty) set of admissible actions in x ∈ X;

4. p : X× A→ ∆(X) is the transition probability function,
pxy (a) denotes the probability of arriving at state y ∈ X
after taking (admissible) action a ∈ A(x) in a state x ∈ X;

5. g : X× A→ R is the immediate cost function, it is the
cost (or reward) of taking action a ∈ A(x) in state x ∈ X.

(Note that ∆(S) is the set of all probability distributions on S ; and
P(S) denotes the power set of set S : the set of all subsets of S .)
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The Bellman Equation

– A (Markovian, randomized, stat.) control policy, π : X→ ∆(A),
is a function from states to probability distributions over actions.

– The value function, with discount factor α, of a policy π is

Jπ(x)
.

= E

[ ∞∑
t=0

αtg(Xt ,A
π
t )

∣∣∣∣ X0 = x

]
,

for all x ∈ X, where Aπt ∼ π(Xt), Xt+1 ∼ p(Xt ,At) and α ∈ (0, 1).

– There could be many optimal policies, but they share the same
optimal value function J∗. We typically aim at estimating J∗.

– The fundamental Bellman equation is TJ∗ = J∗, where

(TJ )(x)
.

= min
a∈A(x)

[
g(x , a) + α

∑
y∈X

p(y | x , a)J(y)
]
.

– Bellman operator T is a contraction with Lipschitz constant α.
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Transition Probability and Cost Changes

Theorem 1: assume that two MDPs differ only in their transition-
probability functions, and let these two functions be p1 and p2.
Let the corresponding optimal value functions be J∗1 and J∗2 , then

‖J∗1 − J∗2‖∞ ≤
α |X| ‖g‖∞

(1− α)2
‖p1 − p2‖∞

Theorem 2: assume that two MDPs differ only in the immediate-
cost functions, and let these two functions be g1 and g2. Let the
corresponding optimal value functions be J∗1 and J∗2 , then

‖J∗1 − J∗2‖∞ ≤
1

1− α
‖g1 − g2‖∞
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Improved Bound for Transition Probability Changes

Theorem 3: assume that two MDPs differ only in their transition-
probability functions, and let these two functions be p1 and p2. Let
the corresponding optimal value functions be J∗1 and J∗2 , then

‖J∗1 − J∗2‖∞ ≤
α ‖g‖∞
(1− α)2

‖p1 − p2‖1,

where ‖·‖1 is a norm on f : X× A× X→ R type functions:

‖f ‖1 = max
x , a

∑
y∈X
| f (x , a, y) | .

Note: since ∀f : ‖f ‖1 ≤ n ‖f ‖∞, where n is size of the state space,
the bound of Theorem 3 is at least as good as that of Theorem 1.
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Discount Factor Changes

Theorem 4: assume that two MDPs, M1 and M2, differ only in
the discount factors, α1, α2 ∈ (0, 1). Let their corresponding
optimal value functions be denoted by J∗1 and J∗2 , then

‖J∗1 − J∗2‖∞ ≤
|α1 − α2|

(1− α1)(1− α2)
‖g‖∞.

Moreover, there exists an MDP, denoted by M3, such that it
differs only in the immediate-cost function from M1, thus its
discount factor is α1, and it has the same optimal value function
as M2. The immediate-cost function of M3 is

ĝ(x , a) = g(x , a) + (α2 − α1)
∑
y∈X

p(y | x , a)J∗2 (y),

where p is the transition function of all Mi ; g is the cost function
of M1 and M2; and J∗2 (y) is the optimal value function of M2.
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Stochastic Optimization Perspective

– We denote the set of value functions by V which contains, in
general, all bounded real-valued functions over an arbitrary set X .

– Many (supervised and reinforcement) learning methods can be
formulated as a stochastic optimization algorithm (SOA),

Vt+1(x) = (1− γt(x))Vt(x) + γt(x)
[

(KtVt)(x) + Wt(x)
]
,

where Vt ∈ V, operator Kt : V → V acts on value functions, γt
denotes the (random) stepsize and Wt is the noise at time t.

– We will consider the case when {Kt} are pseudo-contractions, e.g.,
Q-learning, SARSA and TD-learning can be formulated this way.

– Note that in our formulation the update operator, Kt , is time-
dependent. This will be needed to handle changing dynamics.
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Main Assumptions

(A1) There exits a constant C > 0 such that for all x and t,

E
[
Wt(x) | Ft

]
= 0 and E

[
W 2

t (x) | Ft

]
< C <∞,

where Ft = σ {V0, . . . ,Vt ,W0, . . . ,Wt−1, γ0, . . . , γt}.
(A2) For all x and t: γt(x) ≥ 0 and we have with probability one

∞∑
t=0

γt(x) = ∞ and
∞∑
t=0

γ2
t (x) <∞.

(A3) For all t, Kt : V → V is a supremum norm pseudo-contraction
with Lipschitz constant βt < 1 and with fixed point V ∗t :

∀V ∈ V : ‖KtV − V ∗t ‖∞ ≤ βt ‖V − V ∗t ‖∞.

Let us introduce β0
.

= lim sup
t→∞

βt , and we assume that β0 < 1.
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Approximate Convergence

Definition: a sequence of random elements {Xt} from a normed
space κ-approximates X with κ > 0 if for all ε > 0 there is a t0:

P
(

sup
t>t0

(‖Xt − X‖ ≤ κ)

)
> 1− ε

Theorem 5: suppose that Assumptions (A1), (A2) and (A3) hold
and let {Vt} be the sequence generated by a SOA. Then, for any
V?,V0 ∈ V, the sequence Vt κ-approximates function V? with

κ =
4%

1− β0
where % = lim sup

t→∞
‖V ∗t − V?‖∞

Notice that V? can be an arbitrary function, but, naturally, the
radius of the environment of V?, that the sequence {Vt} almost
surely converges to, depends on lim supt→∞ ‖V ∗t − V?‖∞.
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A Deterministic Pathological Example

ki (v)
.

=

{
v + (1− bi )(v∗i − v) if sign(v∗i ) = sign(v)

v∗i + (v∗i − v) + (1− bi )(v − v∗i ) otherwise
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Varying Environments: (ε, δ)-MDPs

– A class of non-stationary MDPs: in this model the transition-
probabilities and the immediate-costs may change over time, as
long as the accumulated changes remain asymptotically bounded.

Definition: a tuple 〈X,A,A, {pt}∞t=1, {gt}∞t=1, α〉, which represents
a sequence of MDPs, is called an (ε, δ)-MDP where ε, δ > 0, if
there exists a base MDP, M = 〈X,A,A, p, g , α〉, such that

lim sup
t→∞

‖p − pt‖p ≤ ε and lim sup
t→∞

‖g − gt‖q ≤ δ,

where 1 ≤ p, q ≤ ∞ (henceforth, we use p = 1 and q =∞).

– The optimal value function of the base MDP, M, and of the
MDP at time t, Mt , are denoted by J∗ and J∗t , respectively.
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Relaxed Convergence in (ε, δ)-MDPs

Assume we have an (ε, δ)-MDP, then (using Theorems 2 and 3)

lim sup
t→∞

‖J∗ − J∗t ‖∞ ≤ d(ε, δ)

d(ε, δ) =
α ε (‖g‖∞ + δ)

(1− α)2
+

δ

1− α
where J∗t and J∗ are the optimal value functions of Mt and M.

Corollary: consider an (ε, δ)-MDP and assume that (A1), (A2) and
(A3) hold. Let {Vt} be the sequence generated by a SOA. Assume
the fixed point of each Kt is J∗t . Then, Vt κ-approximates J∗ with

κ =
4 d(ε, δ)

1− β0
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Q-learning in (ε, δ)-MDPs

– Q-learning is an arch-typical model-free and off-policy RL method.

– The one-step version of Watkins’ Q-learning rule in (ε, δ)-MDPs is

Qt+1(x , a)
.

= (1− γt(x , a))Qt(x , a) + γt(x , a)(T̃tQt)(x , a),

(T̃tQt)(x , a) = gt(x , a) + α min
B∈A(Y )

Qt(Y ,B),

where Y is a random variable generated from (x , a) by simulation.

– The T̃t operator can be rewritten in a form as follows

(T̃tQ)(x , a) = (K̃tQ)(x , a) + W̃t(x , a),

where W̃t(x , a) is a noise with zero mean and finite variance, and

(K̃tQ)(x , a) = gt(x , a) + α
∑
y∈X

pt(y | x , a) min
b∈A(y)

Q(y , b).
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Q-learning in (ε, δ)-MDPs

– Wt has zero mean and finite variance ⇒ (A1) is satisfied.

– Each K̃t operator is an α contraction ⇒ (A3) holds.

– Thus, (A2) ⇒ {Qt} generated by Q-learning κ-approximates Q∗,
the optimal action-value function, with κ = 4 d(ε, δ)/(1− α).

– Similarly guarantees can be obtained for other RL methods, e.g.,
TD(λ) and asynchronous value iteration working in (ε, δ)-MDPs.

Lemma: assume we have two MDPs which differ only in the
transition-probability functions or only in the immediate-cost
functions or only in the discount factors. Let the corresponding
optimal action-value functions be Q∗1 and Q∗2 , respectively. Then
the bounds for ‖J∗1 − J∗2‖∞ of Theorems 2, 3 and 4 are also bounds
for the optimal action-value function changes ‖Q∗1 − Q∗2‖∞.
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Summary of Part I: Inhomogeneity

– The optimal (state and action) value functions of discounted
MDPs Lipschitz continuously depend on the transition-probability
and the immediate-cost functions. Changes in the discount factor
can be traced back to changes in the immediate-costs.

– In (ε, δ)-MDPs these functions may vary over time, provided that
the accumulated changes remain asymptotically bounded.

– A convergence theorem for stochastic optimization algorithms
with time-dependent pseudo-contraction updates was given, which
guarantees convergence to an environment of a target function.

– These results can be combined to deduce convergence theorems
for reinforcement learning algorithms working in changing MDPs,
which was demonstrated by studying Q-learning in (ε, δ)-MDPs.
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Part II: Quantization
Recursive Estimation of ARX

Systems Using Binary Sensors

Joint work with: Erik Weyer (University of Melbourne)
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Binary Identification of ARX Systems

– Problem: estimating ARX systems observed via binary sensors.

– Previous (textbook) solutions typically assumed fully known noise
characteristics and that the input signal can be chosen by the user.

– We try to reduce the assumptions on the noise and the input.

– Full knowledge of the noise distribution is not needed.

– The input is only assumed to be observed and not controlled.

– But, the threshold of the sensor must be controlled (which
approach has similarities with dithering signal based solutions).

– Here, two recursive identification algorithms are proposed.

– Algorithm I: FIR approximation; which is strongly consistent.

– Algorithm II: simultaneous state and parameter estimation.
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Problem Setting

– We observe an ARX (autoregressive exogenous) system via a
binary sensor (where I denotes an indicator function):

Xt
.

=

p∑
i=1

a∗i Xt−i +

q∑
i=1

b∗i Ut−i + Nt ,

Yt
.

= I(Xt ≤ Ct),

where Xt — state, Ut — input, Nt — noise (at time t).

– The thresholds of the binary sensor, {Ct}, can be controlled.

– Data: the inputs {Ut} and the binary outputs {Yt} are observed.

– Aim: to estimate (identify) θ∗ =
(
a∗1, . . . , a

∗
p, b
∗
1, . . . , b

∗
q

)T ∈ Rp+q
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System Assumptions

– The noises {Nt} are i.i.d., continuous, zero mean, zero median,
E
[
N2
t

]
<∞, and have a continuous and positive density at zero.

– The inputs {Ut} are i.i.d., zero mean, and 0 < E
[
U2
t

]
<∞.

– The input {Ut} and the noise {Nt} sequences are independent.

– The system is stable, i.e., the roots of A∗(z) lie strictly inside the
unit circle; and the transfer function B∗(z)/A∗(z) is irreducible,

A∗(z)
.

= 1− a∗1z
−1 − a∗2z

−2 − · · · − a∗pz
−p,

B∗(z)
.

= b∗1z
−1 + b∗2z

−2 + · · ·+ b∗qz
−q,

where z−1 is the backward shift operator (recall, z−ixt
.

= xt−i ).

– The orders (of polynomials A∗ and B∗) p and q are known.
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Adjustable Thresholds ∼ Dithering

– The binary output can be rewritten as

Yt = I(ϕT
t θ
∗ + Nt ≤ Ct) = I(ϕT

t θ
∗ + Nt − Ct ≤ 0),

where ϕt = (Xt−1, . . . ,Xt−p,Ut−1, . . . ,Ut−q) is the regressor.

– Therefore, choosing the threshold is similar to dithering:
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General Form of the Algorithms

– The general form of both proposed algorithms is

θ̂t+1
.

= ΠMµ(t)

[
θ̂t + αt ϕ̂t

(
1− 2 I(Xt ≤ ϕ̂T

t θ̂t)
) ]
,

where ϕ̂t is a regressor defined differently in the two algorithms,
{αt} are the step-sizes and ΠMµ(t)

is a sequence of projections.

– As we assumed that Nt is continuous, we (almost surely) have

1− 2 I(Xt ≤ ϕ̂T
t θ̂t) = sign(Xt − ϕ̂T

t θ̂t).

– Therefore, the above algorithm will behave almost surely as

θ̂t+1 = ΠMµ(t)

[
θ̂t + αt ϕ̂t sign(Xt − ϕ̂T

t θ̂t)
]
,

which is a sign-error method with expanding truncation bounds.
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Step-Size Assumptions

– Typical step-size assumption of stochastic optimization algorithms

∞∑
t=0

αt = ∞,

∞∑
t=0

α2
t < ∞,

∀ t : αt ≥ 0.

– Henceforth, we will simply assume that for all t we use

αt
.

=
1

t + 1
.
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Expanding Truncation Bounds

– Let {Mt} be a sequence of (strictly) monotone increasing positive
real numbers with Mt →∞ as t →∞.

– Let I(·) be the indicator function and define µ(t) and ∆θ̂i as

µ(t)
.

=
t−1∑
i=1

I
(
|θ̂i + ∆θ̂i | > Mµ(i)

)
,

∆θ̂i
.

= αi ϕ̂i

(
1− 2 I(Xi ≤ ϕ̂T

i θ̂i )
)
.

– Given a positive real M, projection ΠM is

ΠM(x)
.

=

{
x if ‖x‖ ≤ M,

0 otherwise.

Balázs Csanád Csáji Stochastic Optimization in Machine Learning | 27



Algorithm I: FIR Approximation

– Using impulse responses, (c∗i )∞i=1 and (d∗i )∞i=0, we have

Xt =
∞∑
i=1

c∗i Ut−1 +
∞∑
i=0

d∗i Nt−i ,

– Let’s approximate our ARX system with an FIR with order p + q

Xt = ϕ̄T
t θ̄
∗ + Wt ,

ϕ̄t
.

= (Ut−1, . . . ,Ut−p−q)T, θ̄∗
.

= (c∗1 , . . . , c
∗
p+q)T.

– And Wt is simply the unmodelled part of the system

Wt
.

=
∞∑

i=p+q+1

c∗i Ut−i +
∞∑
i=0

d∗i Nt−i .
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Algorithm I: FIR Approximation

– If we can estimate θ̄∗, we can also estimate the true θ∗.

– There is a function f , which we use for post processing, such that

θ∗ = f (θ̄∗),

– Algorithm I is defined by using ϕ̂t = ϕ̄t in the General Algorithm.

Theorem: Strong Consistency. Let (θ̂t)
∞
t=0 be the sequence

generated by Algorithm I. Then, under the given assumptions,
f (θ̂t) converges (a.s.) to θ∗, as t →∞, from any θ̂0 ∈ Rp+q.

– Moreover, one can show that
√
t (θ̂t − θ̄∗) is approximately normal.
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Algorithm II: Simultaneous Estimation

– Main idea: to achieve a direct estimate of θ∗ by simultaneously
maintaining estimates for both X̂t and θ̂t , at time t.

– The sequence of output estimates can be defined as

X̂t
.

=

{ ∑p
i=1 ât,i X̂t−1 +

∑q
i=1 b̂t,iUt−i if t ≥ 0

0 otherwise,

where (ât,i )
p
i=1 and (b̂t,i )

q
i=1 are estimates of the true parameters.

– Algorith II: is defined by setting the General Algorithm as

ϕ̂t
.

= (X̂t−1, . . . , X̂t−p,Ut−1, . . . ,Ut−q)T,

θ̂t
.

= (ât,1, . . . , ât,p, b̂t,1, . . . , b̂t,q)T.
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Simulation Experiment: ARX(2, 2)
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Figure: Recursive estimation with Algorithm I
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Simulation Experiment: ARX(2, 2)
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Figure: Recursive estimation with Algorithm II
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Summary of Part II: Quantization

– Two recursive identification algorithms have been proposed for
identifying ARX systems observed via a binary sensor.

– These algorithms neither assume the knowledge of the noise
distributions, nor assume that the input signal can be chosen.

– However, we should be able to control the threshold of the sensor.

– This assumption is similar to allowing a dithering signal.

– Both algorithms are special cases of our General Algorithm that
can be reformulated as a sign-error method (it is also equivalent
to a stochastic gradient descent algorithm based on L1 error).

– Algorithm I: FIR approximation; which is strongly consistent.

– Algorithm II: simultaneous state and parameter estimation.

– Experimental results demonstrated that both algorithms efficiently
approximated the parameters of an ARX(2,2) system.
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Part III: Acceleration
Asymptotic Analysis of the

LMS Algorithm with Momentum

Joint work with: László Gerencsér (SZTAKI) and

Sotirios Sabanis (University of Edinburgh)
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Introduction

– Stochastic gradient descent (SGD) methods are popular stochastic
approximation (SA) algorithms applied in a wide variety of fields.

– Here, we focus on the special case of least mean square (LMS).

– Polyak’s momentum is an acceleration technique for gradient
methods which has several advantages for deterministic problems.

– K. Yuan, B. Ying and A. H. Sayed (2016) argued that in the
stochastic case it is “equivalent” to standard SGD, assuming fixed
gains, strongly convex functions and martingale difference noises.

– For LMS, they assumed independent noises to ensure this.

– Here, we provide a significantly simpler asymptotic analysis of
LMS with momentum for stationary, ergodic and mixing signals.

– We present weak convergence results and explore the trade-off
between the rate of convergence and the asymptotic covariance.
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Stochastic Gradient Descent

– We want to minimize an unknown function, f : Rd → R, based
only on noisy queries about its gradient, ∇f , at selected points.

Stochastic Gradient Descent (SGD)

θn+1
.

= θn + µ (−∇θf (θn) + εn )

– Polyak’s heavy-ball or momentum method is defined as

SGD with Momentum Acceleration

θn+1
.

= θn + µ (−∇θf (θn) + εn ) + γ ( θn − θn−1 )

– The added term acts both as a smoother and an accelerator.
(The extra momentum dampens oscillations and helps us getting
through narrow valleys, small humps and local minima.)
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Mean-Square Optimal Linear Filter

– [C0] Assume we observe a (strictly) stationary and ergodic
stochastic process consisting input-output pairs {(xt , yt)}, where
regressor (input) xt is Rd -valued, while output yt is R-valued.

– We want to find the mean-square optimal linear filter coefficients

θ∗
.

= arg min
θ∈Rd

E
[

1

2

(
yn − xTn θ

)2
]

– Using R∗
.

= E [ xnx
T
n ] and b

.
= E [ xnyn ], the optimal solution is

Wiener-Hopf Equation

R∗ θ
∗ = b =⇒ θ∗ = R−1

∗ b

– [C1] Assume that R∗ is non-singular, thus, θ∗ is uniquely defined.
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Least Mean Square

– The least mean square (LMS) algorithm is an SGD method

Least Mean Square (LMS)

θn+1
.

= θn + µ xn+1 ( yn+1 − xTn+1θn )

with µ > 0 and some constant (non-random) initial condition θ0.

– Introducing the observation and (coefficient) estimation errors as

vn
.

= yn − xTn θ
∗ and ∆n

.
= θn − θ∗

the estimation error process, {∆n}, follows the dynamics

∆n+1 = ∆n − µ xn+1 x
T
n+1 ∆n + µ xn+1 vn+1

with ∆0
.

= θ0 − θ∗. Note that E [ xnvn ] = 0 for all n ≥ 0.
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The Associated ODE

– A standard tool for the analysis of SA methods is the associated
ordinary differential equation (ODE). In the LMS case (for t ≥ 0)

d

dt
θ̄t = h(θ̄(t)) = b − R∗θ̄t with θ̄0

.
= θ0

where h(θ)
.

= E [ xn+1(yn+1 − xTn+1θ) ] is the mean update for θ.

– A piecewise constant extension of {θn} is defined as θct
.

= θ[t],
(note that here [ t ] denotes the integer part of t).

– LMS is modified by taking a truncation domain D, where D is the
interior of a compact set; then we apply the stopping time

τ
.

= inf{ t : θct /∈ D }.

– [C2] We assume that the truncation domain is such that the
solution of the ODE defined above does not leave D.
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The Error of the ODE

– Let us define the following error processes for the mean ODE

θ̃n
.

= θn − θ̄n and θ̃ct
.

= θct − θ̄t

– The normalized and time-scaled version of the ODE error is

Vt(µ)
.

= µ−1/2 θ̃[ (t∧τ)/µ ] = µ−1/2 θ̃c(t∧τ)/µ

– We will also need the asymptotic covariance matrices of the
empirical means of the centered correction terms, given by

S(θ)
.

=
+∞∑

k=−∞
E
[

(Hk(θ)− h(θ))(H0(θ)− h(θ))T
]

where Hn(θ)
.

= xn(yn− xTn θ), which series converges, for example,
under various mixing conditions (this will be ensured by [C3]).
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Weak Convergence for LMS

– [C3] We assume that the process defined by

Lt(µ)
.

=
∑[t/µ]−1

n=0

(
Hn(θ̄µn)− h(θ̄µn)

)√
µ

converges weakly, as µ→ 0, to a time-inhomogeneous zero-mean
Brownian motion {Lt} with local covariances {S(θ̄t)}.

Theorem 1: Weak Convergence for LMS

Under conditions C0, C1, C2 and C3, process {Vt(µ)} converges
weakly, as µ→ 0, to a process {Zt} satisfying the following linear
stochastic differential equation (SDE), for t ≥ 0, with Z0 = 0,

dZt = −R∗Zt dt + S
1/2(θ̄t) dWt

where {Wt} is a standard Brownian motion in Rd .
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Momentum LMS

LMS with Momentum Acceleration

θn+1
.

= θn + µ xn+1 ( yn+1 − xTn+1θn ) + γ ( θn − θn−1 )

with µ > 0, 1 > γ > 0, and some non-random θ0 = θ−1.

– The filter coefficient errors now follow a 2nd order dynamics

∆n+1 = ∆n − µ xn+1 x
T
n+1 ∆n + µ xn+1 vn+1 + γ (∆n −∆n−1)

with ∆0 = ∆−1 (recall that ∆n
.

= θn − θ∗ and vn
.

= yn − xTn θ
∗).

– To handle higher-order dynamics, we can use a state-vector,

Un
.

=

[
∆n

∆n−1

]
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State-Space Form for Momentum LMS

– Using Un
.

= [ ∆n, ∆n−1 ]T, the state-space dynamics becomes

Un+1 = Un + An+1Un + µWn+1,

An+1
.

=

[
γI − µ · xn+1x

T
n+1 −γI

I −I

]
, Wn+1

.
=

[
xn+1vn+1

0

]
– This, however, does not have the canonical form of SA methods.

– We apply a state-space transformation by Yuan, Ying and Sayed,

T = T (γ) =
1

1− γ

[
I −γI
I −I

]

T−1 = T−1(γ) =

[
I −γI
I −I

]
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Transformed State-Space Dynamics

– To get a standard SA form, we also need to synchronize γ and µ,

µ

1− γ
= c (1− γ) leading to µ = c (1− γ)2.

with some fixed constant (hyper-parameter) c > 0.

– After applying T , the transformed dynamics becomes an (almost)
canonical SA recursion with the fixed gain λ

.
= 1− γ as follows:

Ūn+1 = Ūn + λ
( [

B̄n+1 + λ D̄n+1

]
Ūn + W̄n+1

)
B̄n

.
=

[
0 0
0 −I

]
+ c

[
−1 1
−1 1

]
⊗ xnx

T
n ,

D̄n
.

= c

[
0 −1
0 −1

]
⊗ xnx

T
n , W̄n

.
= c

[
xnvn
xnvn

]
.

Balázs Csanád Csáji Stochastic Optimization in Machine Learning | 44



The Associated ODE for Momentum LMS

– Let us introduce the notations

H̄n(Ū)
.

= (B̄n + λD̄n)Ū + W̄n

h(Ū)
.

= E [ H̄n(Ū) ] = B̄λ Ū

B̄λ
.

= E [ B̄n + λD̄n ] =

[
0 0
0 −I

]
+ c

[
−1 1− λ
−1 1− λ

]
⊗ R∗

Then, the associated ODE takes the form, with ¯̄U0 = Ū0,

d

dt
¯̄Ut = h̄( ¯̄Ut) = B̄λ

¯̄Ut

– The solution for the limit when λ ↓ 0 is denoted by ¯̄U∗t .

– Lemma: If λ is sufficiently small, then B̄λ is stable.
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The ODE Error for Momentum LMS

– [C2’] We again introduce a truncation domain, D̄, as an interior
of a compact set, and assume that the ODE does not leave D̄.

– We set a stopping time for leaving the domain

τ̄
.

= inf { n : Ūn /∈ D̄ }

– And define the error process, for n ≥ 0, as

˜̄Un
.

= Ūn − ¯̄Un

– Finally, the normalized and time-scaled error process is

V̄t(λ)
.

= λ−
1/2 ˜̄U [ (t∧τ̄)/λ ]

– However, the weak convergence theorems for SA methods cannot
be directly applied, because there is an extra λ term in the update.
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Approximation by Standard SA Recursion

– We will approximate the original process by (of course, Ū∗0 = Ū0)

Ū∗n+1 = Ū∗n + λ
(
B̄n+1Ū

∗
n + W̄n+1

)
– Using the same steps as before, we can define the normalized and

time-scaled ODE error process for the approximation as

V̄ ∗t (λ)
.

= λ−
1/2 ˜̄U∗[ (t∧τ̄∗)/λ ]

where the truncation domain D̄∗, for τ̄∗, is such that D̄ ⊆ int(D̄∗).

– [CW] Assume V̄t(λ)− V̄ ∗t (λ) converges weakly to 0, as λ→ 0
(for Momentum LMS, this could be proved based on linearity).

– Thus, weak convergence results can be applied to the approximate
process, {V̄ ∗t (λ)}, and the results will carry over to {V̄t(λ)}.
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Local Covariances for Momentum LMS

– The asymptotic covariance matrices of the empirical means of the
centered correction terms are (under reasonable conditions)

S̄(Ū)
.

=
+∞∑

k=−∞
E
[

(H̄∗k (Ū)− h̄∗(Ū))(H̄∗0 (Ū)− h̄∗(Ū))T
]

where H∗k and h∗ denote the limit of Hk and h as λ ↓ 0.

– [C3’] We assume that the process defined by

L̄t(λ)
.

=

[t/λ]−1∑
n=0

(
H̄∗n( ¯̄U∗λn)− h̄∗( ¯̄U∗λn)

)√
λ

converges weakly, as λ→ 0, to a time-inhomogeneous zero-mean
Brownian motion {L̄t} with local covariance matrices {S̄( ¯̄U∗t)}.
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Weak Convergence for Momentum LMS

Theorem 2: Weak Convergence for Momentum LMS

Under conditions C0, C1, C2’, C3’ and CW, process {V̄t(λ)}
converges weakly, as λ→ 0, to a process {Z̄t} satisfying the
following linear stochastic differential equation (SDE),

dZ̄t = B̄∗ Z̄t dt + S̄
1/2 ( ¯̄U∗t) dW̄t

for t ≥ 0, with initial condition Z̄0 = 0, where {W̄t} is a standard
Brownian motion in R2d and matrix B̄∗ is defined as

B̄∗
.

= lim
λ ↓ 0

B̄λ =

[
0 0
0 −I

]
+ c

[
−1 1
−1 1

]
⊗ R∗
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Lyapunov Equation for Momentum LMS

– The asymptotic covariance matrix of {Z̄t}, denoted by P̄,
satisfies the Lyapunov equation (it is a transformed process)

B̄∗P̄ + P̄B̄T
∗ + S̄ = 0

– Lemma: the solution of this Lyapunov equation is

P̄ =
c

2

[
c S + 2P0 c S

c S c S

]
where P0 is the asymptotic covariance of the weak limit of LMS.

– Let us denote the asymptotic covariance matrix of {T+
1 Z̄t} by P,

where T+
1 is the limit of T−1(γ) as γ → 1 (or λ→ 0). Then,

P = T+
1 P̄ (T+

1 )T = c

[
P0 P0

P0 P0

]
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Comparing LMS with and without Momentum

Theorem 3: Asymptotic Covariance of Momentum LMS

Assume C0, C1, C2, C2’, C3, C3’, CW and that the weak
convergences carry over to N (0,P0) and N (0,P), as t →∞, in
the case of plain and Momentum LMS methods, respectively.

Then, the covariance (sub)matrix of the asymptotic distribution
associated with LMS with momentum is c · P0, where P0 is the
corresponding covariance of plain LMS and c = µ/(1− γ)2.

– If c = 1, then the two asymptotic covariances are the same.

– But, the convergence rates are quite different, as the normalization
is µ−1/2 for LMS and λ−1/2 for Momentum LMS with λ =

√
µ.

– Decreasing c decreases the asymptotic covariance matrix, but it
also decreases the convergence rate, and vice versa, λ =

√
µ/c .
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Summary of Part III: Acceleration

– We have analyzed the effect of momentum acceleration on the
LMS algorithm, as a special case of SGD with fixed gain.

– Momentum acceleration has many known advantages in the
deterministic case, but in a stochastic setting it is found to be
“equivalent” to standard SGD by Yuan, Ying and Sayed (2016).

– However, for fixed-gain LMS, they only showed this equivalence
for the (restrictive) special case of independent observations.

– Here, we provided a simpler asymptotic analysis of LMS with
momentum acceleration for stationary, ergodic and mixing signals.

– We presented weak convergence results and explored the trade-off
between the rate of convergence and the asymptotic covariance.

– The approach can be generalized to a wide range of SA methods.
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Thank you for your attention!
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