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Motivations

• SPS (Sign-Perturbed Sums) builds confidence regions around
the LS (least squares) estimate of linear regression problems.

• Only mild statistical assumptions are needed, e.g., symmetry.

• Not needed: stationarity, moments, particular distributions.

• SPS has many nice properties (as we will see later), most
importantly its confindence regions are exact.

• Regarding the models, the assumption of SPS is that the true
system generating the observations is in the model class.

• However, if the model class is wrong, SPS cannot detect it.

• Here, we suggest an extension of SPS, UD-SPS, that still
builds exact confidence sets, if the model is correct, but can
also detect, in the long run, if the system is undermodelled.
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Linear Regression

Consider a standard linear regression problem:

Linear Regression

yt , ϕT
t θ
∗ + wt

where

yt — output (for time t = 1, . . . , n)

ϕt — regressor (exogenous, d dimensional)

wt — noise (independet, symmetric)

θ∗ — true parameter (deterministic, d dimensional)

Φn = [ϕ1, . . . , ϕn]T — skinny and full rank
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Least Squares

Given: a sample, Z, of size n of outputs {yt} and regressors {ϕt}
A classical approach is to minimize the least squares criterion

V(θ | Z) ,
1

2

n∑
t=1

(yt − ϕT
t θ)2.

The least squares estimate (LSE) can be found by solving

Normal Equation

∇θV(θ̂n | Z) =
n∑

t=1

ϕt(yt − ϕT
t θ̂n) = 0
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Confidence Ellipsoids

LSE is asymptotically normal (under some technical conditions)

√
n (θ̂n − θ∗)

d−→ N (0, σ2 R−1) as n→∞,

where R is the limit of Rn = 1
n

∑n
t=1 ϕtϕ

T
t as n→∞ (if exists).

Confidence Ellipsoid

Θ̃n,µ ,

{
θ ∈ Rd : (θ − θ̂n)T Rn (θ − θ̂n) ≤ µ σ̂2

n

n

}

where P(θ∗ ∈ Θ̃n,µ)≈Fχ2(d)(µ), where Fχ2(d) is the CDF of χ2(d),

σ̂2
n , 1

n−d

n∑
t=1

(yt − ϕT
t θ̂n)2, is an estimate of σ2.
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Reference and Sign-Perturbed Sums
Let us introduce a reference sum and m − 1 sign-perturbed sums.

Reference Sum

S0(θ) , R
− 1

2
n

n∑
t=1

ϕt(yt − ϕT
t θ)

Sign-Perturbed Sums

Si (θ) , R
− 1

2
n

n∑
t=1

ϕt αi ,t(yt − ϕT
t θ)

for i = 1, . . . ,m − 1, where αi ,t (t = 1, . . . , n) are i.i.d. random
signs, that is αi ,t = ±1 with probability 1/2 each (Rademacher).
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Intuitive Idea: Distributional Invariance

Recall: {wt} are independent and each wt is symmetric about zero.

Observe that, if θ = θ∗, we have (i = 1, . . . ,m − 1)

Distributional Invariance

S0(θ∗) = R
− 1

2
n

n∑
t=1

ϕtwt

Si (θ
∗) = R

− 1
2

n

n∑
t=1

ϕt αi ,twt

Consider the ordering ‖S(0)(θ∗)‖2 ≺ · · · ≺ ‖S(m−1)(θ∗)‖2

Note: relation “≺” is the canonical “<” with random tie-breaking

All orderings are equally probable! (they are conditionally i.i.d.)
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Intuitive Idea: Reference Dominance

What if θ 6= θ∗?

In fact, the reference paraboloid ‖S0(θ)‖2 increases faster than
{‖Si (θ)‖2}, thus will eventually dominate the ordering.

Intuitively, for “large enough” ‖θ̃‖, where θ̃ , θ∗ − θ

Eventual Dominance of the Reference Paraboloid

∥∥∥∥ n∑
t=1

ϕtϕ
T
t θ̃ +

n∑
t=1

ϕtwt

∥∥∥∥2

R−1
n

>

∥∥∥∥ n∑
t=1

±ϕtϕ
T
t θ̃ +

n∑
t=1

±ϕtwt

∥∥∥∥2

R−1
n

with “high probability” (for simplicity ± is used instead of {αi ,t}).
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Non-Asymptotic Confidence Regions

The rank of ‖S0(θ)‖2 in the ordering of {‖Si (θ)‖2} w.r.t. ≺ is

R(θ) = 1 +
m−1∑
i=1

I(‖Si (θ)‖2 ≺ ‖S0(θ)‖2),

where I(·) is an indicator function.

Sign-Perturbed Sums (SPS) Confidence Regions

Θ̂n ,
{
θ ∈ Rd : R( θ ) ≤ m − q

}
where m > q > 0 are user-chosen integers (design parameters).
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Exact Confidence

(A1) {wt} is a sequence of independent random variables.

Each wt has a symmetric probability distribution about zero.

(A2) The outer product of regressors is invertible, det(Rn) 6= 0.

Exact Confidence of SPS

P
(
θ∗ ∈ Θ̂n

)
= 1− q

m

for finite samples. Parameters m and q are under our control.

Note that ‖S0(θ̂n)‖2 = 0, thus θ̂n ∈ Θ̂n, assuming it is non-empty.
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Star Convexity

Set X ⊆ Rd is star convex if there is a star center c ∈ Rd with

∀x ∈ X , ∀β ∈ [0, 1] : β x + (1− β) c ∈ X .

Star Convexity of SPS

Θ̂n is star convex with the LSE, θ̂n, as a star center

Hint Θ̂n is the union and intersection of ellipsoids containing LSE.

Carè, Campi, Csáji, Weyer Undermodelling Detection with SPS | 12



Strong Consistency

(A1) independence, symmetricity: {wt} are independent, symmetric

(A2) invertibility: Rn , 1
n

∑n
t=1 ϕtϕ

T
t is invertible

(A3) regressor growth rate:
∑∞

t=1 ‖ϕt‖4/t2 <∞
(A4) noise moment growth rate:

∑∞
t=1

(
E[w2

t ]
)2
/t2 <∞

(A5) Cesàro summability: lim
n→∞

Rn = R, which is positive definite

Strong Consistency of SPS

P
( ∞⋃

k=1

∞⋂
n=k

{
Θ̂n ⊆ Bε(θ

∗)
})

= 1,

where Bε(θ
∗) , { θ ∈ Rd : ‖θ − θ∗‖ ≤ ε } is a norm ball.
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Ellipsoidal Outer Approximation

The reference paraboloid can be rewritten as

‖S0(θ)‖2 = (θ − θ̂n)TRn(θ − θ̂n).

From which an alternative description of the confidence region is

Θ̂n ⊆
{
θ ∈ Rd : (θ − θ̂n)TRn(θ − θ̂n) ≤ r(θ)

}
,

where r(θ) is the q th largest value of {‖Si (θ)‖2}i 6=0.

Ellipsoidal Outer Approximation

Θ̂n ⊆
{
θ ∈ Rd : (θ − θ̂n)TRn(θ − θ̂n) ≤ r∗

}
Where r∗ can be efficiently computed by a semi-definite program.
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Undermodelling

Assume we are given a (finite) sample of input and output data,
{ut}, {yt}, which we model with an FIR system

ŷt(θ) , ϕT
t θ + wt ,

where ϕt , [ ut−1, . . . , ut−d ]>

The true data generation system

yt = ϕ>t θ
∗ + et + nt ,

where et is an extra component that can depend on all past inputs
ut−d−1, ut−d−2, . . . and on all past noises nt−1, nt−2 . . ..

If {et} are nonzero, then the SPS confidence regions will still
(almost surely) shrink, but around a wrong parameter value.
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SPS with Undermodelling Detection

UD-SPS is obtained from SPS by replacing {Si (θ)} with

Q0(θ) ,

[
Rn Bn

B>n Dn

]− 1
2 1

n

n∑
t=1

[
ϕt

ψt

]
(yt − ϕ>t θ),

Qi (θ) ,

[
Rn Bn

B>n Dn

]− 1
2 1

n

n∑
t=1

αi ,t

[
ϕt

ψt

]
(yt − ϕ>t θ),

where ψt is a vector that includes s extra input values preceding
the n̂b that are included in ϕt , ψt , [ ut−d−1, . . . , ut−d−s ]>, and

Bn ,
1

n

n∑
t=1

ϕtψ
>
t , Dn ,

1

n

n∑
t=1

ψtψ
>
t .
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The Connection of UD-SPS and SPS

The connection of UD-SPS and SPS can be stated as

Reducing UD-SPS to SPS

The UD-SPS region, Θ̂o
n, for estimating θ∗ ∈ Rd can be

interpreted as the restriction to a d-dimensional space of a
standard SPS region, Θ̂′n, that lives in the domain {θ′ ∈ Rd+s}.

Rd+s is the d-dimensional identification space augmented
with s extra components: Θ̂o

n can be identified with the first d
components of the set Θ̂′n ∩ (Rd × {0}s).
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UD-SPS with Correct System Specifications

Theorem (Exact Confidence of UD-SPS)

If the FIR system is correctly specified, then

P{ θ∗ ∈ Θ̂o
n } = 1− q/m.

Theorem (Strong Consistency of UD-SPS)

If the FIR system is correctly specified, then (under some
technical conditions) for all ε > 0, we have that

P

[ ∞⋃
n̄=1

∞⋂
n=n̄

{
Θ̂o

n ⊆ Bε(θ
∗)
}]

= 1,

where Bε(θ
∗) denotes an ε-ball centred around θ∗.
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UD-SPS in the Presense of Undermodelling

Theorem (Undermodelling Detection)

Assume that the system is undermodelled, that is {et} are nonzero
(and some technical conditions hold). With the notations

R̄ ′ , lim
n→∞

[
Rn Bn

B>n Dn

]
, Ē ′ , lim

n→∞

1

n

n∑
t=1

[
ϕt

ψt

]
E[et ],

if the following detectability condition holds

R̄ ′−1Ē ′ /∈ Rn̂b × {0}s ,

then

P

[ ∞⋃
n̄=1

∞⋂
n=n̄

{
Θ̂o

n = ∅
}]

= 1.
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Numerical Experiments

Consider the following ARX(1,1) data generating system

yt = a∗yt−1 + b∗ut−1 + nt ,

with zero initial conditions, where a∗ = 0.5 or 0.15 or 0 (see later),
b∗ = 1, {nt} are i.i.d. Laplacian with mean 0 and variance 0.1.

The input signal is generated as ut = 0.75ut−1 + vt , where {vt}
are i.i.d. standard normal random variables.

The user-chosen predictor is an FIR(1) model

ŷt(θ) = ϕ>t θ = b ut−1,

that is, the autoregressive part is missing, θ = [ b ] is the model
parameter, and ϕt = [ ut−1 ] is the regressor at time t.
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95% UD-SPS Confidence Intervals, a∗ = 0
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95% UD-SPS Confidence Intervals, a∗ = 0.15
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95% UD-SPS Confidence Intervals, a∗ = 0.5
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Summary and Conclusions

• SPS (Sign-Perturbed Sums) is a powerful finite sample system
identification method that builds exact, star convex, strongly
consistent confidence regions for linear regression problems.

• SPS also has efficient ellipsoidal outer-approximations.

• However, SPS cannot detect if the model class is wrong.

• Here, we suggested an extension of SPS, called UD-SPS,
that still guarantees exact and strongly consistent confidence
regions if the model order is correctly specified.

• Furthermore, it can detect, in the long run, if the model is
undermodelled (detection = empty confidence region).

• There is a strong connection between SPS and UD-SPS.

• The theoretical results were also confirmed by numerical
experiments: FIR models of ARX systems were studied.
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