Markovian Resource Control

We showed that stochastic resource allocation problems can be reformulated as *Markov decision processes*, more precisely, as *stochastic shortest path* problems, with favorable properties, e.g., all policies are proper.

An *adaptive sampling* based method was applied, by which the optimal value function is iteratively approximated. The updates are performed at the end of each episode (a simulation of the resource allocation process).

Sampling and Regression Based Reinforcement Learning

1. Initialize Q_t, L_t, τ and let $i = 1$.
2. Repeat (for each episode)
 1. Set π, to a soft and semi-greedy policy w.r.t. Q_{t-1}, e.g.,

 $\pi(x,a) = \text{exp}(Q_{t-1}(x,a)/\tau)/\sum_{a'}\text{exp}(Q_{t-1}(x,a')/\tau)$
 2. Simulate a state-action trajectory from x_i using policy π.
 3. For $j = 0$ to 1 (for each state-action pair in the episode) do
 1. Determine the features of the state-action pair, $\phi' = h(x'_i,a'_i)$.
 2. Compute the new action-value estimation for x'_i and a'_i, e.g.,

 $\hat{Q}(x'_i,a'_i) = (1-\gamma)Q_{t-1}(x'_i,a'_i) + \gamma \left[g(x'_i,a'_i) + \alpha \min_{a'' \in A} Q_{t-1}(x''_i,b'_i) \right]$
 3. End loop (end of state-action processing)
 4. Update sample set L_{t-1}, with \{ $(\phi'_j, \phi'_i) ; j = 1, \ldots, t_i$ \}. the result is L_t.
 5. Calculate Q_t by fitting a smooth regression function to the sample of L_t.
 6. Increase the episode number t, and decrease the temperature τ.
 7. Until some terminating conditions are met, e.g., t reaches a limit or the estimated approximation error to Q_t gets sufficiently small.

Output: the action-value function Q_t for $\phi(x)$, e.g., the greedy policy w.r.t. Q_t.

The notations of the pseudo-code are as follows: variable i is the episode number, t_i is the length of episode i and j is a parameter for time-steps inside an episode. The Boltzmann temperature is denoted by τ, π_t is the control policy applied in episode i and π_0 is the initial state. State x'_i and action a'_i correspond to step j in episode i. Function h computes features for state-action pairs while γ_t denotes learning rates. Finally, L_t denotes the regression sample and Q_t is the fitted (state-action) value function in episode i.

Additional Improvements

We applied several additional improvements to the core solution method:

- **Action space decomposition**: in order to decrease the available actions in the states, the action space was decomposed (figure on the right side).
- **Rollout methods**: to guide the initial exploration and to gather samples for the regression, limited-lookahead rollout algorithms were applied.
- **Clustering**: in order to divide the problem into several smaller subproblems, we clustered the tasks according to their expected slack times.
- **Distributed sampling**: we can exploit having more than one processors.

Experiments & Conclusions

The method has proven to be very efficient on benchmark and industrial problems.

- It outperformed most previous algorithms on hard job-shop problems (top).
- It showed excellent performance on a simulated industrial problem (middle).
- Clustering not only resulted in speedup but also in performance gains (down).

Advantages over previous approaches:

- It is *general*, since it is applicable to a large class of resource control problems.
- It takes *uncertainties* into account.
- The method can also quickly *adapt* to disturbances and environmental changes.
- There are theoretical guarantees of approximating the global optimal solution.
- It *scales-well* with the size of the problem without dramatic performance losses.
- It can *use domain specific knowledge*, as well (e.g., in the rollouts or explorations).
- It is an iterative, *any-time* solution.