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What is off-policy learning good for?

• Off-policy learning is learning about one way of behaving while actually

behaving in another way.

• Classical example: Q-learning – it learns about the optimal policy while

taking actions in a more exploratory fashion.

• Note that the original TD(λ) (and its generalization) is on-policy!

• „Off-policy learning is of interest because only one way of selecting actions

can be used at any time, but we would like to learn about many different

ways of behaving from the single resultant stream of experience.”

• Example: the options framework for temporal abstraction (macro actions)
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Notations - Markov Decision Processes

Consider a (finite, discrete time, stationary, fully observable, episodic)

Markov Decision Process (MDP),M = 〈S,A,A, p, r, γ〉, where

• S = {s0, . . . , sN} a set of discrete states. We only consider episodic

MDPs, thus, there is an initial state s0 and a terminal state sG. (SSP)

• A is a finite set of control actions

• A : S → P(A) is an avaibility function, P denotes power set

• p : S × A → ∆(S) is a transition function, where

∆(S) denotes the set of probability distributions over S

• r : S × A× S → R is an immediate reward function

• γ ∈ [0, 1] is the discount factor
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Reminder - action-value functions

A (randomized, stationary, Markov) control policy is π : S → ∆(A).

The action-value function of a policy is Qπ : S × A → R, where

Qπ(s, a) = Eπ

[
T−1∑
t=0

γtr(St, At, St+1)

∣∣∣∣ S0 = s, A0 = a

]
,

where At ∼ π(St), At+1 ∼ p(St, At) and T is random variable denoting

the time when the terminal state is reached (ST = sG).

A policy is called proper if it reaches the terminal state with probability one.

The problem to be considered is to estimate Qπ for an arbitrary proper target

policy π, given all the data is generated by a different proper behavior policy b,

where b is soft, meaning that ∀s ∈ S, a ∈ A(s) : b(s, a) > 0.
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Importance sampling

The expected value of a random variable X with distribution d has to be

estimated from samples drawn from another distribution d′. Note that

Ed[X] =

∫
x d(x)dx =

∫
x

d(x)

d′(x)
d′(x)dx = Ed′

[
X

d(X)

d′(X)

]
.

Therefore, estimations of the expected value can be given by

Ed[X] ≈ 1

n

n∑
i=1

xi
d(xi)

d′(xi)
, or Ed[X] ≈

∑n
i=1 xi

d(xi)
d′(xi)∑n

i=1
d(xi)
d′(xi)

,

where the xi are samples selected according to d′. The former is called

importance sampling and is a consistent and unbiased estimator. The latter

is called weighted importance sampling and is still consistent but biased.
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Importance sampling estimation of Qπ

We can use importance sampling in (first-visit) Monte-Carlo policy evaluation

Qπ(s, a) ≈ 1

M

M∑
m=1

Rm wm,

where M is the number of episodes containing state-action pair (s, a), and

Rm =
Tm−1∑
t=tm

γt−tmr(sm
t , am

t , sm
t+1),

where tm is the first time when (sm
t , am

t ) = (s, a). The sampling weights are

wm =
Tm−1∏
t=tm

π(sm
t , am

t )

b(sm
t , am

t )
.
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Per-decision algorithms

Monte-Carlo methods above consider complete returns. An estimator

that breaks down into rewards could be more efficient and more easily

implemented in an incremental, step-by-step basis. For example,

Qπ(s, a) ≈ 1

M

M∑
m=1

Tm−1∑
t=tm

γt−tmr
(m)
t

t∏
i=tm+1

π
(m)
i

b
(m)
i

,

where r
(m)
t = r(sm

t , am
t , sm

t+1), b
(m)
i = b(sm

i , am
i ) and π

(m)
i = π(sm

i , am
i ).

This estimator is called per-decision importance sampling estimator and it is a

consistent and unbiased estimator of Qπ (Preecup, Sutton and Singh, 2000).

The construction of the weighted per-decision estimator is straightforward.
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Eligibility-traces for per-decision estimate

Now, let us consider an on-line variant of the per-decision importance

sampling algorithm that incorporates the ideas of temporal-difference

learning, as well. (1) Updating the eligibility-traces for all state-action pairs

et(s, a) =

{
1 iff t = tm(s, a)

et−1(s, a) γ λ π(st,at)
b(st,at)

otherwise
,

where λ ∈ [0, 1] is an eligibility trace decay factor. (2) The TD-error is

δt = rt + γ
π(st+1, at+1)

b(st+1, at+1)
Qt(st+1, at+1)−Qt(st, at),

(3) The update rule for the action-value estimate is

Qt+1(s, a) = Qt(s, a) + αt(s, a) et(s, a) δt ∀s, a
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Convergence theorem

Theorem 1. For any soft, stationary behavior policy b, and any λ ∈ [0, 1] that

does not depend on the action at, the above algorithm with off-line updating

converges w.p.1 to Qπ, under the usual step-size conditions on αt.

Proof. First, we consider the corrected truncated return of the off-line

per-decision algorithm. After n steps the current estimate is used

R
(n)
t =

n−1∑

k=0

γkrt+k

t+k∏
i=t+1

πi

bi

+ γnQ(st+n, at+n)
t+n∏

i=t+1

πi

bi

,

where rt = r(st, at, st+1), bi = b(si, ai) and πi = π(si, ai). As a first

step, we show that ‖Eb[R
(n)
t | st, at ]−Qπ ‖∞ ≤ γn ‖Q−Qπ ‖∞.
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Let Ω(s, a, j) denote the set of all possible trajectories of j state-action pairs

starting with (s, a). For example, ω = 〈a0, s0, s1, a1, . . . , sj−1, aj−1〉.
Then the expected return of the corrected truncated return for (s, a) is

Eb

[
R(n) | s0 = s, a0 = a

]
=

=
n−1∑

k=0

∑

ω∈Ω(s,a,k+1)

P( ω | b, s0 = s, a0 = a ) γkrk

k∏
i=1

πi

bi

+

+
∑

ω∈Ω(s,a,k+1)

P( ω | b, s0 = s, a0 = a ) γnQ(sn, an)
n∏

i=1

πi

bi

= (∗)

Now, we can apply the equality as follows (from the Markov property)

P( ω | b, s0 = s, a0 = a ) =
k∏

i=1

P(si | si−1, ai−1) b(si, ai)
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(∗) =
n−1∑

k=0

∑

ω∈Ω(s,a,k+1)

(
k∏

i=1

P(si | si−1, ai−1) b(si, ai)

)
γkrk

k∏
i=1

πi

bi

+

+
∑

ω∈Ω(s,a,k+1)

(
n∏

i=1

P(si | si−1, ai−1) b(si, ai)

)
γnQ(sn, an)

n∏
i=1

πi

bi

=

=
n−1∑

k=0

∑

ω∈Ω(s,a,k+1)

γkrk

k∏
i=1

P(si | si−1, ai−1) π(si, ai) +

+
∑

ω∈Ω(s,a,k+1)

γnQ(sn, an)
n∏

i=1

P(si | si−1, ai−1) π(si, ai) .
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On the other hand, by applying the Bellman equation for Qπ iteratively n times

Qπ(s, a) =
n−1∑

k=0

∑

ω∈Ω(s,a,k+1)

γkrk

k∏
i=1

P(si | si−1, ai−1) π(si, ai) +

+
∑

ω∈Ω(s,a,k+1)

γnQπ(sn, an)
n∏

i=1

P(si | si−1, ai−1) π(si, ai) .

Therefore, we obtain

max
(s,a)

∣∣Eb

[
R(n) | s, a ]−Qπ(s, a)

∣∣ ≤ γn max
(s,a)

|Q(s, a)−Qπ(s, a)|

From this, the convergence of the original per-decision algorithm follows from

the results of Jaakola, Jordan and Singh (1994).
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Now, we consider the case of eligibility-traces. Assume λ = 1

et(s, a) = γt−tm

t∏
i=tm+1

πi

bi

We have
n−1∑

k=0

et+k(s, a)δt+k =

=
n−1∑

k=0

γk

(
t+k∏

i=t+1

πi

bi

)(
rt+k + γ

πt+k+1

bt+k+1

Q(st+k+1, at+k+1)−Q(st+k, at+k)

)
=

=
n−1∑

k=0

γkrt+k

(
t+k∏

i=t+1

πi

bi

)
+ γnQ(st+n, at+n)

(
t+n∏

i=t+1

πi

bi

)
−Q(st, at).
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n−1∑

k=0

γkrt+k

(
t+k∏

i=t+1

πi

bi

)
+ γnQ(st+n, at+n)

(
t+n∏

i=t+1

πi

bi

)
−Q(st, at) =

= R
(n)
t −Q(st, at).

Since the algorithm is equivalent to applying a convex combination of n-step

updates, and each update converges to correct Q-values, the algorithm will

converge to correct Q-values, as well. Q.E.D.
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Action-value function approximation

Now, we consider the case of linear function approximation

Qπ(s, a) ≈ Q̃(s, a) =
m∑

i=1

θ(i)φsa(i) = θT φsa

In what follows we restrict ourselves to per-episode (off-line) updating. The

increment of the conventional TD(λ) under per-episode updating is

∆θt = αt(R
λ
t − Q̃t)∇θQ̃t = αt(R

λ
t − θT φt)φt,

where Q̃t = Q̃(st, at) and φt = φstat . And Rλ
t is

Rλ
t = (1− λ)

∞∑
n=1

λn−1

(
n−1∑
i=0

γi rt+i + γnθT φt+n

)
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Per-decision importance sampling

The per-decision importance sampling with function approximation is

∆θt = αt(R̃
λ
t − θT φt)φt

t∏
i=1

%i,

where %i = π(si, ai)/b(si, ai) and R̃λ
t is

R̃λ
t = (1− λ)

∞∑
n=1

λn−1R̃
(n)
t ,

and the corrected n-step return is defined as follows

R̃
(n)
t =

n−1∑
i=0

γi rt+i

i∏
j=1

%t+j + γnθT φt+n

n∏
j=1

%t+j
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Convergence and error bounds

Theorem 2. Let ∆θ and ∆θ̃ be the sum of the parameter increments over an

episode under on-policy TD(λ) and importance sampling TD(λ) respectively,

assuming that the starting vector is θ in both cases. Then, for all s0 and a0

Eb[∆θ̃ | s0, a0] = Eπ [∆θ | s0, a0] .

Now, we investigate error bounds. Let d ∈ ∆(S × A) be an arbitrary

distribution of starting state-action pairs. Let Pπ be the state-action pair

transition probability matrix for policy π. Dπ =
∑∞

t=0 P t
πd, Dπ(s, a) is the

expected number of visits to state-action pair (s, a). Define the norm ‖·‖π

over state-action vectors by ‖v‖2
π =

∑
s,a v(s, a)2Dπ(s, a).
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Convergence and error bounds

There are a number of (natural?) assumptions:

1. the state and action sets are finite;

2. all state-action pairs are visited under the behavior policy b;

3. both behavior and target polices, b and π, are proper;

4. the rewards are bounded;

5. the step-size sequence satisfies the stochastic approximation conditions:

∀k : αk ≥ 0 ,
∑∞

k=0 αk = ∞ and
∑∞

k=0 α2
k < ∞ ;

6. the variance of the product of correction factors can be bounded for any

initial state: Eb [%2
1%

2
2 . . . %2

T ] < B for all s1 ∈ S.
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Convergence and error bounds

Theorem 3. Under the assumptions 1–6 above, episodic importance sampled

TD(λ) converges with probability one to some θ∞ such that
∥∥∥Q̃θ∞ −Qπ

∥∥∥
π
≤ min

θ

∥∥∥Q̃θ −Qπ
∥∥∥

π

1

1− β
,

where β is the contraction factor of the matrix

M = (1− λ)
∞∑

k=0

λk(γPπ)k+1.

The proof follows immediately from the results of Bertsekas and Tsitsiklis,

page 312 of Neurodynamic Programming (1996).
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Restarting within an episode

Restarting within an episode makes sense, since:

1. Assumption 6 (bounded variance of the correction factor product) can be

satisfied with bounded episode lengths;

2. The importance sampling correction product often decay rapidly, and when

it becomes very small, a very little more is learned.

Let gt be a non-negative random variable, which is allowed to depend only on

events up to time t. Function g : Ωt → R+ gives the expected value of gt for

any trajectory up through t. A generalized algorithm (with forward view) is

∆θt = αt(R̃
λ
t − θT φt)φt

t∑

k=0

gk

t∏

i=k+1

%i,
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Restarting within an episode

Theorem 4. Let ∆θ and ∆θ̃ be the sum of the parameter increments over an

episode under the original importance sampled TD(λ) and the generalized

version respectively, assuming that the starting vector is θ in both cases.

Then, ∀g, there exists an alternate starting distribution dg such that

Eb[∆θ̃ | s0, a0 ∼ d ] = Eb [∆θ | s0, a0 ∼ dg] .

Therefore, restarting in a general way, at any point during an episode, is

equivalent to a conventional at-the-beginning starting distribution. (The latter

case the convergence is already proven.) However, the value converged to

will depend on dg and thus on b, rather then d and π alone.
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Thank you for your attention!
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