
Two-echelon vehicle routing problem
Technical report

Markó Horváth1,* and Tamás Kis1

1Institute for Computer Science and Control, H-1111 Budapest, Kende u. 13-17.
*Corresponding author, marko.horvath@sztaki.hu

Abstract

In this paper we investigate a two-echelon vehicle routing problem where pickups and
deliveries are planned simultaneously. Pickup offerings of semi-finished goods and delivery
requests for finished goods may arrive throughout the planning horizon, each of them having
its own time-window. A fleet of distinct vehicles divided into multiple depots is used to
transport semi-finished goods to processing facilities, and then for transporting finished
goods to customers. Processing is not instantaneous, i.e., each semi-finished good has a
lead time. The goal is to simultaneously plan pickup and delivery routes such that all the
problem constraints are respected and distinct operational and penalty costs are minimized.
We propose an exact branch-and-price approach to solve the problem.

1 Introduction

The original motivation of this research is a wood recycling, where some customers offer wood
waste (e.g., construction or demolition waste, etc.) for removal, and other customers demand
recycled wood. Of course, wood waste cannot be transported directly to customers, it has
to be first recycled at some processing facilities. So, assume there is a set of semi-finished
goods which have to be processed to obtain finished goods. In the previous example these
are distinct wood types which have to be recycled (that is, revised, cleaned, classified, etc.),
however, these could be distinct parts which have to be anodized or painted, or machines
which have to be repaired, etc. Pickup requests (offering semi-finished goods) and delivery
requests (demanding finished goods) arrive over a finite planning horizon. Each request has
an individual time-window (that is, a set of subsequent periods) when it can be satisfied. It
is not mandatory to satisfy all of the requests, however, each pickup request has a rejection
penalty, and each delivery request offers some profit.

In this paper we investigate a two-echelon many-to-many pickup-and-delivery problem,
where semi-finished goods have to be first transported to an intermediate facility where they
are processed, and then the finished goods are delivered to customers. Our main interest is an
exact method for solving the problem optimally.

Structure of the paper

The paper is organized as follows. In Section 2 we overview related literature. In Section 3
we define the problem formally. In Section 4 we present our modeling approach along with

1

a mixed-integer linear programming formulation. Then, in Section 5 we propose our branch-
and-price solution approach for the problem. Finally, we present our computational results in
Section 6.

2 Literature review

Briefly stated, the familiar vehicle routing problem aims to determine an optimal set of routes
to be performed by a fleet of vehicles to fulfill customer demands at different locations. The
problem was introduced more than 60 years ago by Dantzig and Ramser (1959), then gener-
alized by Clarke and Wright (1964), and many variations have appeared since then, see e.g.,
Toth and Vigo (2002); Eksioglu et al. (2009); Braekers et al. (2016); Zhang et al. (2022).

In case of a pickup-and-delivery problem each order have to be transported between an origin
and a destination. Using the terminology of Berbeglia et al. (2010), in a many-to-many pickup-
and-delivery problem orders are not associated with a fix origin and destination, but several
locations can serve as a pickup or a delivery point.

In contrast to direct delivery, in case of a multi-echelon vehicle routing problem orders are
moved through some intermediate facilities (e.g., cross-docks, distribution centers, etc.) before
reaching their destinations. Obviously, in case of a two-echelon vehicle routing problem, orders
have to be transported only at one intermediate facility (Cuda et al., 2015; Sluijk et al., 2022).

3 Problem formulation

In this section we formalize the problem. Notation are summarized in Tables 1 to 3.
The planning horizon is divided into a finite set of consecutive periods, i.e., T = {1, 2, . . . , tend}.
Let P1 and P2 be the set of semi-finished and the finished goods, respectively. Note that

|P1| = |P2|, and there is a bijection b : P1 → P2 between these sets, that is, the finished good
corresponds to semi-finished good k ∈ P1 is b(k), and the semi-finished good corresponds to
finished good k ∈ P2 is b−1(k). Finally, let P1,2 = P1 ∪ P2 be the set of all goods.

Semi-finished goods are processed and become finished goods at given facilities. These
processes follow detailed schedules, however, we assume that each good has a fixed lead time,
and the total quantity that can be transported to a facility in a period is limited. Let Vf be the
set of facilities, and let qlimi denote the upper bound for the total quantity of semi-finished
good that can be transported to facility i ∈ Vf in a period. The lead time of a semi-finished
good k ∈ P1 at facility i ∈ Vf is denoted by ltimeik, that is, if semi-finished good k of quantity q
is transported to facility i at period t, then finished good b(k) of quantity q appears at the
beginning of period t + ltimeik at facility i. To respect the planning horizon, such a good
cannot be transported to the facility if tend < t + ltimeik.

Supplies of semi-finished goods and demands for finished goods (that is, pickup requests
and delivery requests, respectively) may arrive throughout the planning horizon. Each pickup
request belongs to a pickup point and each delivery request has a delivery point. For convenience
it is assumed that these points are unique, that is, exactly one request belongs to each point.
Thus expressions ’request’ and ’point’ are used interchangeably. The set of pickup points and
delivery points are denoted by Vp and Vd, respectively. Let quantityik be the non-negative
supply (demand) quantity from good k ∈ P1 (k ∈ P2) at pickup (delivery) point i ∈ Vp (i ∈ Vd).
Let twi ⊆ T be the time-window (that is, a set of consecutive periods) when request i ∈ Vp ∪Vd
can be satisfied, let penaltyi be the penalty for rejecting pickup request i ∈ Vp and profiti be
the profit for satisfying delivery request i ∈ Vd.

2

Table 1: Notation (sets)

T planning horizon

P1 set of semi-finished goods
P2 set of finished goods
P1,2 set of goods: P1 ∪ P2

V0 set of depots
Vf set of facilities
Vp set of pickup points
Vd set of delivery points
V set of locations: V0 ∪Vp ∪Vd ∪Vf

W set of vehicles

Table 2: Notation (parameters)

distij ∈ R0≤ distance between locations i ∈ V and j ∈ V

dlimv ∈ R0≤ distance limit of vehicle v ∈W in a period
capv ∈ Z0≤ capacity of vehicle v ∈W
costv ∈ R0≤ distance cost of vehicle v ∈W

twi ⊆ T time-window for pickup of delivery request i ∈ Vp ∪Vd
penaltyi ∈ R0≤ penalty for rejecting pickup request i ∈ Vp
profiti ∈ R0≤ profit for satisfying delivery request i ∈ Vd
quantityik ∈ Z0≤ quantity of good k ∈ P1,2 at point i ∈ Vp ∪Vd

ltimeik ∈ Z0< lead time of semi-finished good k ∈ P1 at facility i ∈ Vf
qlimi ∈ Z0≤ upper limit of transported goods to facility i ∈ Vf in a period

A fleet of inhomogeneous vehicles divided into multiple depots are available to transport
goods. Each vehicle starts and ends its routes at the same depot. Each vehicle can return to
its depot several times during a period, however, the total distance traveled in one period is
limited. Several aspects can be considered to restrict the goods transported by a vehicle at the
same time (e.g., weight, volume, etc.). In this paper we assume that only the quantity of these
goods are limited, however, our model can be easily extend to handle multiple criteria. Let
W be the set of vehicles, and V0 be the set of depots. For each vehicle v ∈ W, let dlimv its
traveling distance limit in a period, capv its capacity (that is the maximum quantity of goods),
and costv be its distance cost (per kilometer).

A route is a sequence of locations along with pickup up and delivered quantities, however,
it is more convenient to extend this concept such that each route belongs to a (period, vehicle)
pair. As we mentioned earlier, in the rest of the paper we consider two types of routes (see
Figure 1). A pickup route r belonging to vehicle νr ∈W, period τr ∈ T, and facility λr ∈ Vf , has a
sequence Λr of pairwise distinct pickup points, and has non-negative drop-off δ+rik and pickup
quantities δ−rik for each location i ∈ V and for each good k ∈ P1,2 such that δ−rik = quantityik for
all i ∈ Λr and k ∈ P1, δ+r,λr ,k = ∑i∈Λr quantityik, and zero otherwise. The total distance and the
total cost of a route r is denoted by σr and νr, respectively.

A pickup route r is feasible if its total distance does not exceed the daily limit of the corre-
sponding vehicles (that is, σr ≤ dlimνr ,τt), the transported quantities never exceed the capacity

3

i

j

f

d
δ−rik = quantityik (k ∈ P1)

δ−rjk = quantityjk (k ∈ P1)

δ+r f k = δ−rik + δ−rjk (k ∈ P1)

(a) Pick-up route r with Λr = (i, j) and λr = f .

Figure 1: Example for routes. Figure 1a: vehicle departs from its depot empty, visits some
pickup points where picks up all of the available semi-finished goods, then visits a facility
where drops off all the collected goods, and finally returns to its depot.

Table 3: Notation (routes)

Rp set of feasible pickup routes
Rd set of feasible delivery routes
R set of feasible routes: Rp ∪ Rd

τr ∈ T period of route r ∈ R
νr ∈W vehicle assigned to route r ∈ R
λr ∈ Vf facility belongs to route r ∈ R
Λr sequence of pickup (delivery) points visited by route r ∈ Rp (r ∈ Rd)
δ+rik ∈ Z0≤ amount of good k ∈ P1,2 dropped off at location i ∈ V by route r ∈ R
δ−rik ∈ Z0≤ amount of good k ∈ P1,2 picked-up at location i ∈ V by route r ∈ R
φr ∈ R0≤ cost of route r ∈ R
σr ∈ R0≤ total distance of route r ∈ R

ξri ∈ {0, 1} indicates whether route r ∈ R visits location i ∈ V

of the vehicle (that is, ∑i∈Λr ,k∈P1
δ−rik ≤ capνr

), and all its pickup points can be visited in the
corresponding period (that is, τr ∈ twi for all i ∈ Λr). The set of all the feasible pickup routes
is denoted by Rp.

To ease our notation we introduce value ξri indicating whether route r ∈ R visits loca-
tion i ∈ V, that is, ξri = 1 if i ∈ Λr or i = λr, and zero otherwise.

4 Modeling approach

We handle pickup and delivery routes separately, that is, we assume that semi-finished goods
and finished goods cannot be transported by the same truck at the same time. The reason is
that, after these routes are determined, schedules at processing facilities can be determined to
yield accurate completion times for the goods. By this, fixing the pickup routes, and using
these completion times, one can resolve the problem to determine delivery routes.

In this paper we only consider the global problem, that is, where pickup and delivery
routes should be determined simultaneously.

We introduce three types of variables. Binary variable xr indicates whether route r ∈ R is
performed. Binary variable yi indicates whether pickup or delivery point i ∈ Vp ∪Vd is visited

4

by a route, or in other words, whether pickup or delivery request is satisfied. Non-negative
continuous variable sikt indicates the closing stock level at facility i ∈ Vf from good k ∈ P2 at
the end of period t ∈ T ∪ {0}.

We formalize the problem as follows.

minimize ∑
r∈R

φrxr − ∑
i∈Vp

penaltyi yi − ∑
i∈Vd

profiti yi (1)

∑
r∈R: i∈Λr

xr = yi for all i ∈ Vp ∪Vd (2a)

∑
r∈R(t,v)

σrxr ≤ dlimv for all t ∈ T, v ∈W (2b)

sikt = si,k,t−1 + ∑
r∈Rp(t−ltimei,b−1(k))

δ+r,i,b−1(k)xr − ∑
r∈Rd(t)

δ−rikxr for all i ∈ Vf , k ∈ P2, t ∈ T (2c)

∑
r∈Rp

∑
k∈P1

δ+iktxr ≤ qlimi for all i ∈ Vf , t ∈ T (2d)

xr ∈ {0, 1} for all r ∈ R (2e)
yi ∈ {0, 1} for all i ∈ Vp ∪Vd (2f)

0 ≤ sikt for all i ∈ Vf , k ∈ P2, t ∈ T (2g)

sik0 = 0 for all i ∈ Vf , k ∈ P2 (2h)

The objective (1) minimizes the total cost of performed routes plus the total penalties of
rejected pickup requests minus the total profit of satisfied delivery request. Note that using a
constant offset ∑i∈Vp penaltyi the objective function is equivalent with the following one

minimize ∑
r∈R

φrxr + ∑
i∈Vp

penaltyi(1− yi)− ∑
i∈Vd

profiti yi.

Constraint (2a) ensures that yi = 1 if and only if a route visits point i ∈ Vp ∪Vd, and by this, no
pickup or delivery point is visited by multiple routes. Distance limits of vehicles per period are
respected due to constraints (2b). Constraint (2c) expresses the closing stock level of processing
facilities at the end of periods. Quantity limits for facilities are forced by constraint (2d). Initial
stock levels are set by constraint (2h) (which is zero in this case).

Note that y-variables could be eliminated from the problem and equation (2a) could be
replaced by inequality

∑
r∈R: i∈Λr

xr ≤ 1 for all i ∈ Vp ∪Vd,

however, we will take advantage of the former modeling approach in our branching strategies
(see Section 5.3).

5 Solution approach

In this section we propose an exact branch-and-price approach to solve master problem (1),
(2a)–(2h). An initial restricted master problem consists of only a subset of variables is building
(see Section 5.1), and additional variables may be added to the problem during the global
search procedure, that is, in each node of the search-tree variable pricing is performed (see
Section 5.2). Problem-specific rules are introduced to perform branching when the optimal
solution to the restricted master problem is fractional (see Section 5.3).

5

5.1 Initial restricted master problem

The initial restricted master problem (initial RMP) consists of all the s- and y-variables, how-
ever, x-variables are priced out during the global search procedure. Remark that the initial
RMP is feasible, since rejecting all the requests yields a feasible solution.

5.2 Variable pricing

In an exact branch-and-price procedure in each search-tree node variable pricing is necessary
to get valid lower bound on the objective value or to prove that the current subproblem is in-
feasible. If the current LP-relaxation is feasible, additional variables may contribute to improve
its solution value, thus variable pricing should search for variables with negative reduced cost.
If no variable with negative reduced cost exists, then the solution value is a valid lower bound
on the objective function. If the current LP-relaxation is infeasible, additional variables may
make the problem feasible, thus variable pricing is also needed, however, the so-called Farkas
coefficients have to be used instead of the reduced costs. If no variable with negative Farkas
coefficient exists, then the subproblem of the node is indeed infeasible.

If the current LP-relaxation is feasible, let ai ∈ R (i ∈ Vp ∪ Vd), btv ∈ R0≤ (t ∈ T, v ∈ W),
cikt ∈ R (i ∈ Vf , k ∈ P2, t ∈ T), dit ∈ R0≤ (i ∈ Vf , t ∈ T) be the dual values corresponding
to inequalities (2a), (2b), (2c) and (2d) respectively. The pricing problem for the pickup routes
and the delivery routes are:

minr∈Rp

φr + ∑
i∈Λr

ai + bτr ,νr σr + ∑
i∈Vf

∑
k∈P2

ci,k,τr+ltimeib−1(k)
δ+rib−1(k) + ∑

i∈Vf

∑
k∈P1

di,τr δ+rik

 (3)

and

minr∈Rd

φr + ∑
i∈Λr

ai + bτr ,νr σr − ∑
i∈Vf

∑
k∈P2

ci,k,τr δ−rib−1(k)

 , (4)

respectively.
If the current LP-relaxation is infeasible, then instead of dual values, the so-called Farkas

multipliers (these are the values that prove the infeasibility of the LP) are available for the
constraints. The Farkas pricing is similar to the reduced cost pricing, however, zero objective
function and Farkas multipliers are used. That is, for example in case of pickup-up routes, the
pricing problem is similar to (3), however, term φr is omitted, and values ai, btv, cikt, dit refer
to the Farkas multipliers.

In Section 5.2.1 we propose a solution approach for pricing problem (3). Since we use
similar solution approach for pricing problem (4) and for the corresponding Farkas pricing
problems, we omit the description of these procedures.

Note that branching decisions also should be taken into consideration during the pricing,
that is, only those routes have to be considered which respect the corresponding branching
constraints. We detail these modifications in Section 5.3.

5.2.1 Pickup routes

We solve problem (3) separately for each tuple (v, t, f) ∈ W × T × Vf , that is, instead of all
routes of Rp we only consider those pickup routes which is performed by vehicle v, belongs to
period t, and drops off semi-finished goods at facility f .

6

.

s

t

vi vj vk

Figure 2: Directed graph for pricing. The path of solid black arcs represents pickup route
which visits pickup points i, k and j.

Fix a tuple (v, t, f) ∈ W × T × Vf , and assume that vehicle v belongs to depot d. We
define a directed graph D = (N, A) with node set N = {s, t} ∪ {vi : i ∈ Vp} and arc set
A = {(s, vi) : i ∈ Vp} ∪ {(vi, t) : i ∈ Vp} ∪ {(vi, vj) : (i, j) ∈ Vp × Vp, i 6= j}, where node s
represents depot d, and node t represents the path from facility t to depot d, see Figure 2.

Observation 1. Every elementary path (that is, nodes are not repeated) from s to t represents a (not
necessarily feasible) pickup route, and each (not necessary feasible) pickup route is represented by an
elementary s–t path.

We define functions ` : A → R, w1 : A → R0≤, and w2 : A → Z0≤ on the arcs as fol-
lows. Let w1(s, vi) := distdi for all i ∈ Vp, w1(vi, vj) := distij for all (i, j) ∈ Vp × Vp (i 6= j),
and w1(vi, t) := disti f +dist f d for all i ∈ Vp. Let w2(s, vi) := 0 for all i ∈ Vp, w2(vi, vj) :=
∑k∈P1

quantityik for all (i, j) ∈ Vp × Vp (i 6= j), and w2(vi, t) := ∑k∈P1
quantityik for all (i, j) ∈

Vp. Finally, let `(s, vi) := distdi(costv +btv) for all i ∈ Vp, `(vi, vj) := distij costv + quantityik dit +
∑k∈P1

quantityik c f kt.

Observation 2. For each elementary s–t path P, w1(P) := ∑e∈P w1(e) equals to the total distance
of the corresponding route, w2(P) := ∑e∈P w2(e) equals to the total picked up quantity during the
corresponding route, and `(P) := ∑e∈P `(e) equals to the reduced cost of the corresponding route.

Based on the previous observations we have the following proposition.

Proposition 1. There is a bijection between the feasible pickup routes and those elementary s–t paths P
in D where w1(P) ≤ dlimvt and w2(P) ≤ capv. Moreover, the reduced cost of such a route is equals
to `(P).

Thus, finding a route with negative reduced cost is equivalent to finding an elementary s–t
path P with negative cost ` such that w1(P) ≤ dlimvt and w2(P) ≤ capv.

5.3 Branching rules

In this section we present our strategies to branch on binary x- and y variables when the
optimal solution (s̄, x̄, ȳ) to the restricted master problem of the corresponding search-tree
node is fractional (i.e., some of the x-variables or y-variables take on fractional values).

Since all of the y-variables are added to the initial restricted master problem, the custom
0-1 branching can be performed on these variables. However, the x-variables are priced out
during the branch-and-price procedure, thus when branching is performed on these variables,
for each branch a constraint is created and sticked to the corresponding child node. In a

7

search-tree node a constraint is active, if it is sticked to one of the ancestor nodes. When the
branch-and-price solver selects a node to be optimized, active constraints are endorsed, that
is, existing variables violating these constraints are fixed locally to zero. Active constraints are
also taken into consideration in variable pricing.

5.3.1 Branching on y-variables

First of all, branching on y-variables is performed. That is, if there is at least one y-variable
in the branching candidate list, one of them is choosing to perform the custom 0-1 branching.
That is, let i ∈ Vp ∪Vd be a point such that the value |0.5− ȳi| is minimal. Then, two branches
are created, locally fixing variable yi to 0 on the first branch, and to 1 on the other branch.

5.3.2 Assignment branching

The next three branching rules are based on a similar idea. Briefly stated, if a pickup point
is visited, then it is visited in a single period by a single vehicle, and its semi-finished goods
are transported to a single facility. We can say, in an integer solution each visited pickup point
is committed to a single period, to a single vehicle and to a single facility. However, in a
fractional solution a pickup point i might be committed for example to multiple periods, that
is, there are routes r1 and r2 with 0 < x̄r1 , x̄r2 < 1 and τr1 6= τr2 . In this case two branches can
be made forbidding to visit pickup point i in period τr1 on the first branch and forbidding to
visit pickup point i in period τr2 on the second branch.

In general, let S be a set of periods, or vehicles, or facilities. If there is a pickup point i ∈ Vp
committed to multiple elements of S, say s1 and s2, then S is partitioned into subsets S′ and
S \ S′ such that s1 ∈ S′ and s2 ∈ S \ S′, and three branches are created with constraints 〈i→ S′〉,
〈i → S \ S′〉 and 〈i → ∅〉, respectively. That is, pickup point i is required to be committed to
one of the elements of S′ on the first branch, to one of the elements of S \ S′ on the second
branch, and pickup request at point i is rejected in the third one. Note that the third, reject
branch is not necessary if a branching related to pickup point i is already performed at some
of the ancestor nodes, since it would yield an infeasible node. Also remark that such a branch
refers to the case when yi is fixed locally to zero. See Figure 3 for an example.

When a node is selected by the branch-and-price solver to be optimized, a constraint 〈i →
S〉 can be easily endorsed. That is, each existing variable xr of the corresponding restricted
master problem with ξri = 1 can be locally fixed to zero, if S is a set of periods and τr /∈ S,
if S is a set of vehicles and νr /∈ S, or if S is a set of facilities with j /∈ S and ξrij = 1. The
corresponding cover variable yi is also fixed to 1 locally.

When pricing is performed in a search-tree node (see Section 5.2) active constraints can
be taken into consideration by removing nodes from the pricing graph, that is, the resource
feasible elementary s–t paths of the modified graph represent those feasible pickup routes
which respect the branching constraints, and vice-versa. Assume that the current pricing
belongs to the tuple (v, t, f) ∈ W × T × Vf , then each node vi (i ∈ Vp) is deleted from the
pricing graph, if there is an active constraint 〈i→ S〉 such that S is a set of vehicles which does
not include v, or S is a set of periods which does not include period t, or S is a set of facilities
which does not include f .

Assign a pickup point to a time-window In this branching rule pickup requests are forced
to be managed in given time-windows, that is, constraints in the form of 〈i → [ts, te]〉 are
created, where i ∈ Vp and 1 ≤ ts ≤ te ≤ tend, or 〈i→ ∅〉 to forbid pickup point i to be visited.

8

root

b1

b2

〈i→ S′〉 〈i→ S \ S′〉 yi → 0

〈i→ S′′〉 〈i→ S′ \ S′′〉

(a) Assignment branching with no 0-1 branching before

root

b0

b1

yi → 0 yi → 1

〈i→ S′〉 〈i→ S \ S′〉

(b) Assignment branching after 0-1
branching

Figure 3: Examples for the search-tree, where in the red nodes, branchings are performed
related to pickup point i. In the left example, since no 0-1 branching is performed before the
first assignment branching (node b1), a discarding branch is also created, however, in the next
time in this sub-tree (node b2), discarding branch is omitted since it would yield az infeasible
sub-problem. In the right example, since a 0-1 branching is performed before assignment
branching, no discarding branch is necessary.

Let Cit := ∑r∈Rp :τr=t ξri x̄r denote the commitment of pickup point i ∈ Vp to period t ∈ T.
Note that in case of integer solutions Cit ∈ {0, 1} holds, moreover, for each pickup point i
there is at most one period t with Cit = 1. We say that a pickup point is committed to multiple
periods (with respect to the fractional solution), if there are distinct periods t1 and t2 such that
0 < Ci,t1 < 1 and 0 < Ci,t2 < 1.

If there is no pickup point committed to multiple periods, then the branching rule cannot
be performed. Otherwise, let i ∈ Vp, t1 ∈ T and t2 ∈ T such that 0 < Ci,t1 < 1, 0 < Ci,t2 < 1,
Cit = 0 for all t1 < t < t2, ∑t1

t=1 Cit ≤ 0.5, 0.5 < ∑t2
t=1 Cit and the value 0.5−∑t1

t=1 Cit is minimal.
Finally, let [ts, te] be the widest time-window when pickup point i can be visited (in the current
sub-search-tree), and tb := b(t1 + t2)/2c. Then, three branches are created with the following
constraints 〈i→ [ts, tb]〉, 〈i→ [tb + 1, te]〉, and 〈i→ ∅〉 respectively.

Assign a pickup point to a set of facilities In this branching rule we force pickup offerings
to be transported to given facilities, that is, we create constraints in the form of 〈i→ S〉 where
i ∈ Vp and S (Vf .

Let Cij := ∑r∈Rp ξrijx̄r denote the commitment of pickup point i ∈ Vp to facility j ∈ Vf .
Note that in case of integer solutions Cij ∈ {0, 1} holds, moreover, for each pickup point i
there is at most one facility j with Cij = 1. We say that a pickup point is committed to multiple
facilities (with respect to the fractional solution), if there are distinct facilities j1 and j2 such
that 0 < Ci,j1 < 1 and 0 < Ci,j2 < 1.

If there is no pickup point committed to multiple facilities, then the branching rule cannot
be performed. Otherwise, such a pickup point, say i, is chosen. Let 〈i → S〉 be the strictest
active constraint concerns to this pick-ip point where S is a set of facilities. S is partitioned into
subsets S′ and S \ S′ such that 0 < ∑j∈S′ Cij < 1 and 0 < ∑j∈S\S′ Cij < 1. Then, three branches
are created with the following constraints 〈i→ S′〉, 〈i→ S \ S′〉, and 〈i→ ∅〉 respectively.

9

Assign a pickup point to a set of vehicles In this branching rule we force pickup offerings
to be transported by given vehicles, that is, we create constraints in the form of 〈i→ S〉 where
i ∈ Vp and S (W.

Let Civ := ∑r∈Rp :νr=v ξri x̄r denote the commitment of pickup point i ∈ Vp to vehicle v ∈W.
Note that in case of integer solutions Cij ∈ {0, 1} holds, moreover, for each pickup point i
there is at most one vehicle j with Cij = 1. We say that a pickup point is committed to multiple
vehicles (with respect to the fractional solution), if there are distinct vehicles v1 and v2 such
that 0 < Ci,v1 < 1 and 0 < Ci,v2 < 1.

If there is no pickup point committed to multiple vehicles, then the branching rule cannot
be performed. Otherwise, such a pickup point, say i, is chosen. Let 〈i → S〉 be the strictest
active constraint concerns to this pick-ip point where S is a set of vehicles. S is partitioned into
subsets S′ and S \ S′ such that 0 < ∑v∈S′ Civ < 1 and 0 < ∑v∈S\S′ Civ < 1. Then, three branches
are created with the following constraints 〈i→ S′〉, 〈i→ S \ S′〉, and 〈i→ ∅〉 respectively.

5.3.3 Follower branching

Assume that none of the previously introduced branching rules can be applied at the cur-
rent search-tree node. It follows that in the current LP-solution each visited pickup point is
committed to a single vehicle, to a single period, and to a single facility, however – since the
solution is fractional –, some pickup points are committed to multiple routes belongs to the
same period and the same facility, and performed by the same vehicle. When each pickup
point is assigned to a vehicle, a facility, and a period, the problem is similar to a set parti-
tioning problem (however, the sequence of the visited locations also matters), where the items
correspond to the pickup points and sets correspond to routes. Thus, the well-known branch-
ing rule of Ryan and Foster (1981) could be applied, that is, two appropriate pickup points are
chosen, then two branches are created forcing to visit those pickup points by the same route
on the first branch and forcing to visit them by different routes on the other branch. However,
handling these types of branching constraints are inconvenient in the solution approach for the
pricing problems presented in Section 5.2, since it requires to introduce additional resources
(may be with negative values) to the problem. For similar reasons Desrochers and Soumis
(1989) modifies this branching rule to use in a crew scheduling problem.

For two distinct pickup points i and j let Qij ⊆ {r ∈ Rp : ξri = ξrj = 1} is the set of those
routes where point j is visited immediately after point i. Define C : Vp×Vp → [0, 1] as follows.
For pickup points i 6= j let Cij := ∑r∈Qij

x̄r. Note that in case of integer solutions Cij ∈ {0, 1}
holds. Choose (i, j) ∈ Vp × Vp such that the value |0.5− Cij| is minimal. Then, the following
two branches are created

0-branch: ∑
r∈Qij

xr = 0 and

1-branch: ∑
r∈Qij

xr ≥ 1,

that is, forbidding to visit pickup point j immediately after pickup point i is visited on the
0-branch, and requiring that if either pickup point i or j is visited, then both of them have to
be visited in this order, and no other points can be visited between them.

When a node is selected by the branch-and-price solver, these constraints can be easily en-
dorsed. That is, in case of a 0-branch, each existing variable xr of the corresponding restricted
master problem can be locally fixed to zero if route r visits pickup point i and immediately
after visits pickup point j. In case of a 1-branch, each existing variable xr of the corresponding

10

restricted master problem can be locally fixed to zero if route r visits exactly one pickup point
of i and j, or visits both of them such that the immediately successor of i is not j.

When pricing is performed in a given search-tree node (see Section 5.2) these constraints
also have to be taken into consideration. In case of a 0-branch, arc (vi, vj) is removed from the
pricing graph. In case of a 1-branch, arcs (vi, vk) (k 6= j) and arcs (vk, vj) (k 6= i) are removed
from the pricing graph.

5.4 Primal heuristics

In order to improve the upper bound, i.e., to find an integer feasible solution to the master
problem, we apply a local-search based heuristics.

Assume that an integer feasible solution (s̃, x̃, ỹ) is found to the master problem. Then,
we create a schedule which consists of three types of routes. First, the schedule contains real
routes which refer to the routes used by this solution (i.e., routes r with x̃r = 1). Second, for
each vehicle, for each period, and for each facility we also create a pointless pickup route and a
pointless delivery route, that is, such a route refers to a vehicle itinerary where the vehicle visits
the given facility on the given period but does not visit any pickup or delivery points. Finally,
we also create a fictive route which does not belong to any vehicle or period or facility, but
contains all of the uncovered pickup and delivery points (i.e., points i ∈ Vp ∪Vd with ỹi = 0).

Each schedule is associated with an evaluated value which is basically the corresponding
objective value plus some penalty costs for violating certain constraints. Namely, for a given
schedule S with real routes R̃

eval(S) := ∑
r∈R̃

φr − ∑
i∈Ṽp

penaltyi − ∑
i∈Ṽd

profiti +λ×Π(S)

with

Π(S) := ∑
v∈W

dlimv− ∑
r∈R̃(t,v)

σr

+ ∑
i∈Vf

∑
t∈T

 ∑
r∈R̃p

∑
k∈P1

qlimi −δ+ikt

 ,

where Ṽp and Ṽd are the set of pickup and delivery points of real routes, respectively, and λ is
a large constant.

We apply two types of operations to modify a schedule. In case of a node relocation a pickup
or a delivery point is removed from its current position and placed to an other position, either
on the same route or an other one. This operation allows to assign a point to a different
vehicle, a different factory, or a different period. Relocating a point from a real route to the
fictive route means that the corresponding request is no longer satisfied. In the reverse case, if
a point is relocated from the fictive route to a real or pointless route, the corresponding request
becomes satisfied. In case of a node exchange two points are exchanged with each other. Clearly,
exchanging two nodes in the fictive route is superfluous.

To improve the current incumbent schedule S, we first repeatedly apply node relocations,
that is, we go consider those schedules which can be resulted from S by a node relocation,
and chose a one, say S′, with minimal evaluated value. If eval(S′) < eval(S), i.e., the schedule
is improved, we continue with schedule S′, otherwise we stop since schedule S cannot be
improved by node relocation. Then we do the same with node exchanges. If the schedule
is improved at least once, we start a new iteration, otherwise we terminate the local-search
procedure. If the final schedule, say S′′, is feasible, that is, Π(S′′) = 0, then eval(S′′) is a valid
upper bound for the master problem, and thus can be set as a cutoff bound.

11

Table 4: Results for single-depot, single-good instances

#Facilities #P-D #Periods #Vehicles Time Gap

1 8-8 8 16 7.53 0.002
16 16 6.50 0.002

1 16-16 8 16 1354.2 0.001
16 16 135.4 0.002

1 32-32 8 1 1200.0 0.209
8 1200.0 0.035

16 1059.7 0.012

1 32-32 16 1 1200.0 0.276
8 1177.7 0.208

16 1023.6 0.096

4 8-8 8 16 87.5 0.002
16 16 43.8 0.002

4 16-16 8 16 896.6 0.038
16 16 860.5 0.021

4 32-32 8 1 1200.0 0.223
8 1102.0 0.124

16 1106.4 0.361

6 Computational results

In this section we present the results of our computational experiments. The aim of these ex-
periments was to examine how each parameter (e.g., number of facilities, pickup and delivery
point, vehicles, etc.) affects the efficiency of the solving procedure.

The solution approach is implemented in C++ programming language using the SCIP Op-
timization Suite (Gamrath et al. (2020), version 7.0.1) as branch-and-price framework. In case
of each execution we applied a gap limit set to 0.5 %, and a time limit set to 1200 seconds. All
experiments were performed on a workstation with an i9-7960X 2.80 GHz CPU with 16 cores,
under Debian 9 operating system using a single thread.

6.1 Instances

All the instances were randomly generated where we considered 1 depot, 1 good, 1-4 facilities,
8-32 pickup and 8-32 delivery points, 8-16 periods, and 1-16 vehicles. For each combination of
these parameters we generate 15 instances with distinct random seeds.

6.2 Results

In Table 4 we summarize the results where each row corresponds to the average of 15 instances,
and we depict the number of facilities (#Facilities), the number of pickup and delivery points
(#P-D), the number of periods (#Periods), the number of vehicles (#Vehicles), the average time
in seconds (Time), and the average final gap (Gap) calculated as

|Cutoff bound−Dual bound|/ min(|Cutoff bound|, |Dual bound|).

The main observation is that, as expected, the running time significantly increases as the
number of pickup and delivery points increase. The average final gap in the bigger cases (that

12

is, 32-32 points) is also higher than in case of smaller instances (that is, 8-8 points). Similarly,
increasing the number of facilities also increase computational time.

In contrast, increasing the number of periods or the number of vehicles often helps to
decrease the computational time and the average gap.

Acknowledgments

This research has been supported by the National Research, Development and Innovation
Office, grant numbers SNN 129178, and TKP2021-NKTA-01.

References

G. Berbeglia, J.-F. Cordeau, and G. Laporte. Dynamic pickup and delivery problems. European
Journal of Operational Research, 202(1):8–15, 2010.

K. Braekers, K. Ramaekers, and I. Van Nieuwenhuyse. The vehicle routing problem: State of
the art classification and review. Computers & Industrial Engineering, 99:300–313, 2016.

G. Clarke and J. W. Wright. Scheduling of vehicles from a central depot to a number of delivery
points. Operations research, 12(4):568–581, 1964.

R. Cuda, G. Guastaroba, and M. G. Speranza. A survey on two-echelon routing problems.
Computers & Operations Research, 55:185–199, 2015.

G. B. Dantzig and J. H. Ramser. The truck dispatching problem. Management science, 6(1):80–91,
1959.

M. Desrochers and F. Soumis. A column generation approach to the urban transit crew
scheduling problem. Transportation science, 23(1):1–13, 1989.

B. Eksioglu, A. V. Vural, and A. Reisman. The vehicle routing problem: A taxonomic review.
Computers & Industrial Engineering, 57(4):1472–1483, 2009.

G. Gamrath, D. Anderson, K. Bestuzheva, W.-K. Chen, L. Eifler, M. Gasse, P. Gemander,
A. Gleixner, L. Gottwald, K. Halbig, G. Hendel, C. Hojny, T. Koch, P. Le Bodic, S. J. Ma-
her, F. Matter, M. Miltenberger, E. Mühmer, B. Müller, M. E. Pfetsch, F. Schlösser, F. Serrano,
Y. Shinano, C. Tawfik, S. Vigerske, F. Wegscheider, D. Weninger, and J. Witzig. The SCIP
Optimization Suite 7.0. Technical report, Optimization Online, March 2020.

D. Ryan and E. Foster. An integer programming approach to scheduling. 1981.

N. Sluijk, A. M. Florio, J. Kinable, N. Dellaert, and T. Van Woensel. Two-echelon vehicle routing
problems: A literature review. European Journal of Operational Research, 2022.

P. Toth and D. Vigo. The vehicle routing problem. SIAM, 2002.

H. Zhang, H. Ge, J. Yang, and Y. Tong. Review of vehicle routing problems: Models, classifica-
tion and solving algorithms. Archives of Computational Methods in Engineering, 29(1):195–221,
2022.

13

	Introduction
	Literature review
	Problem formulation
	Modeling approach
	Solution approach
	Initial restricted master problem
	Variable pricing
	Pickup routes

	Branching rules
	Branching on y-variables
	Assignment branching
	Follower branching

	Primal heuristics

	Computational results
	Instances
	Results

