
A local-search based algorithm for the ICAPS 2021
Dynamic Pickup and Delivery Problem

Markó Horvátha,∗, Tamás Kisa, Péter Györgyia

aInstitute for Computer Science and Control, H-1111 Budapest, Kende u. 13-17.

Abstract

In this paper we consider a dynamic vehicle routing problem with pickups and
deliveries which was introduced in a competition hosted by the International
Conference on Automated Planning and Scheduling in 2021. Given a homo-
geneous fleet of vehicles to serve pickup-and-delivery requests arriving online.
Loading items has to respect the vehicle’s capacity limit, while unloading items
has to follow a last-in-first-out order, and the factories have a limited number of
docking ports for loading and unloading, which may force the vehicles to wait.
The goal is to satisfy all the requests such that a combination of tardiness penal-
ties and traveling costs is minimized. We present a local-search based algorithm
to solve this problem, and compare it to the best known methods.

Keywords: Dynamic Vehicle Routing Problem, Dynamic Pickup and Delivery
Problem, Variable Neighborhood Search

1. Introduction

Dynamic vehicle routing problems constitute a rapidly developing field of
transportation research, which is certified by a series of recent review papers,
see e.g., Berbeglia et al. (2010); Pillac et al. (2013); Bektaş et al. (2014); Psaraftis
et al. (2016); Rios et al. (2021). The growing interest is due to the rapidly de-5

veloping real-world application areas, and to fact that real-time communication
technologies and solutions make it possible to implement efficient algorithms in
practice.

Briefly stated, the familiar vehicle routing problem aims to determine an
optimal set of routes to be performed by a fleet of vehicles to fulfill customer10

demands at different locations. The problem was introduced more than 60 years
ago by Dantzig and Ramser (1959), then generalized by Clarke and Wright
(1964), and many variations have appeared since then, see e.g., Toth and Vigo
(2002); Eksioglu et al. (2009); Braekers et al. (2016); Zhang et al. (2022). The

∗Corresponding author
Email addresses: marko.horvath@sztaki.hu (Markó Horváth), tamas.kis@sztaki.hu

(Tamás Kis), peter.gyorgyi@sztaki.hu (Péter Györgyi)

Preprint submitted to EURO Journal on Transportation and Logistics April 27, 2022

variant where each customer request has a given origin and a given destination15

is called the one-to-one pickup and delivery problem, using the terminology of
Berbeglia et al. (2010). In addition, if the vehicles can serve more than one
request at a time, the problem can be categorized as the vehicle routing problem
with pickups and deliveries.

A vehicle routing problem is dynamic, if the requests are not known in20

advance, instead, they arrive in an online fashion over the planning horizon,
e.g., over one day. The dynamic nature brings new challenges, and makes the
problem more complex. Most importantly it requires to make decisions also in
an online fashion, namely, upon the arrival of new requests, either the vehicle
routes have to be changed, or new routes have to be planned on top of the25

already planned ones. However, these decisions have to be made quickly, since
the more time is spent on searching for good solutions, the less time remains
for reacting to the changes taken place in the meantime. Thus only a limited
computation time (a few minutes) is available for updating the routes of the
vehicles, and thus the exact methods devised for solving the static problems30

typically cannot be applied in the dynamic variants. Instead, heuristic methods
are applied, such as ant colony optimization (Montemanni et al., 2005), local
search and variable neighborhood search based methods (Branchini et al., 2009;
Xu et al., 2013), genetic algorithms (Elhassania et al., 2014), particle swarm
optimization (Demirtaş et al., 2015), etc.35

Assessing the performance of an online algorithm is not straightforward. An
option is to apply competitive analysis, which aims to determine the maximum
ratio between the value of the online solution and the offline optimum in the
worst case. However, this type of analysis focuses on the worst case scenario,
which is typically far from the real-life cases, moreover, it is hard or even impos-40

sible to apply for complex problems and algorithms. Thus, in most of the cases
a simulator is also developed for assessing the merits of different algorithms for
the dynamic problem.

Dynamic vehicle routing problems with pickups and deliveries often arise in
practice, for example, in courier services such as meal delivery services (Reyes45

et al., 2018; Ulmer et al., 2021) or other same-day delivery services (Attanasio
et al., 2007), in internal logistics especially when automated guided vehicles are
used (Györgyi and Kis, 2019), and in external logistics (Yang et al., 2004). When
the travel times for serving the requests are bounded from above, the problem is
called the dial-a-ride problem which also has a considerable literature (Cordeau50

and Laporte, 2003; Ho et al., 2018; Nasri et al., 2021).
In the course of the International Conference on Automated Planning and

Scheduling in 2021 (ICAPS 2021), the Dynamic Pickup and Delivery Problem
(DPDP) challenge1 was organized by Huawei Technologies Co. Ltd., where the
proposed dynamic vehicle routing problem with pickups and deliveries is based55

on their real-life scenario. A large amount of cargoes (including raw materials,
products and semi-finished goods) need to be delivered between the factories

1https://icaps21.icaps-conference.org/Competitions/

2

https://icaps21.icaps-conference.org/Competitions/

every day. Due to the uncertainties of customers’ requirements and production
processes, most delivery requirements cannot be fully decided beforehand. The
delivery orders, with the information including the pickup factories, delivery60

factories, the amount of cargoes and the time requirements, arrive over the day
and a fleet of homogeneous vehicles are periodically scheduled to serve these
orders. Due to the large amount of delivery requests, even a small improvement
of the logistics efficiency can bring significant benefits. Therefore, it is of great
significance to develop an efficient optimization algorithm to dispatch orders65

and plan the route of the vehicles.
A slight variant of the above problem was investigated in (Ma et al., 2021;

Li et al., 2021). The participants of the DPDP challenge were provided with a
public benchmark dataset and a simulator to dynamically evaluate their algo-
rithms, see (Hao et al., 2022). The submitted algorithms were evaluated on a70

hidden dataset, and teams were ranked based on their resulted scores. The top
three placed teams were invited to ICAPS 2021 to shortly present their solution
approaches. These presentations along with the source codes are available on
the website of the competition2.

As it turned out, all of the top three teams of the competition applied classi-75

cal techniques of Operations Research, such as constructive heuristics and local
search. The winning team, Zhu et al. (2021) proposed a variable neighborhood
search method for the problem. The team finished on the second place, Ye and
Liang (2021) developed a rule based algorithm. Our team took third place us-
ing a local-search based method (Horváth et al., 2021). In this paper we revise80

and improve our solution approach, and perform computation experiments to
compare it to the aforementioned ones.

The paper is organized as follows. In Section 2 we describe the problem in
detail, starting with the basic static version (Section 2.1) and then the dynamic
one (Section 2.2). In Section 3 we present our modeling approach, while the85

new solution approach is summarized in Section 4, we also discussed the simi-
larities and differences to the methods of Zhu et al. (2021) and Horváth et al.
(2021) in Section 4.3. In Section 5 we present the results of our computational
experiments. Finally, we conclude the paper in Section 6.

2. Problem definition90

In the next two sections we define the problem in detail. In the rest of the
paper, we simply refer to this problem as the Dynamic Pickup and Delivery
Problem (DPDP).

2.1. The static problem

Given a set of factories, such that the distance and the traveling time between95

factories fi and fj are denoted with dist(fi, fj) and travel(fi, fj), respectively.

2https://competition.huaweicloud.com/information/1000041411/Winning

3

https://competition.huaweicloud.com/information/1000041411/Winning

Given a set O of orders, where each order oi ∈ O is described by a tuple
(fpi , f

d
i , Ii, t

p
i , t

d
i), where fpi and fdi represent the pickup factory and the delivery

factory, respectively, Ii is the set of order items (i.e., cargoes) to be delivered,
tpi refers to the release time and tdi is the committed completion time. Order oi100

can only be served after its release time tpi .
Given a fleet V of homogeneous vehicles to serve orders. Vehicles have a

uniform loading capacity. Initially, each vehicle is empty and parks at a given
factory.

Each order item has a size, which represents the amount of space the item105

occupies in a vehicle. The size of an order is the total size of its order items.
An order is splittable if its size exceeds the uniform capacity limit of vehicles,
otherwise the order is unsplittable. The order items of an unsplittable order
must be loaded at once to a single vehicle, and must be unloaded from that
vehicle at once. For each order item, the amount of time required to load110

and unload is also given. The loading/unloading time of an order is the total
loading/unloading time of its order items. Unloading order items has to follow
a last-in-first-out (LIFO) order.

Each factory has a given number of docking ports for loading and unloading.
When a vehicle arrives at a factory, it approaches a free port (may have to wait115

until one of the ports becomes free), then some order items may be unloaded
from the vehicle, and some order items may be loaded to the vehicle. Then, the
vehicle can start to its next destination, if any. The dock approaching time is
denoted by tdocking. A port is in use if a vehicle is currently approaching it, or
is performing loading or unloading operations at the port, otherwise it is free.120

Recall that if all of the ports are in use when a vehicle arrives at a factory,
it has to wait until one of them becomes free. The allocation of vehicles to
ports is done on a first-come first served basis. If multiple vehicles arrive at the
same factory at the same time, then their service order is determined randomly.
However, in the static problem, we can use any tie-breaking rule, such as always125

serve the vehicle of smallest index.
In Figure 1 we depict a situation where four vehicles arrive at a factory with

two docking ports. Vehicle 1 arrives at the factory at time t1 and occupies a
free docking port. Vehicle 2 arrives at time t2 and occupies the other free port.
Vehicle 3 arrives at time t3, however, since both of the ports are in use (that is,130

currently vehicle 1 is under unloading at the first port, and vehicle 2 approaches
the other one), it has to wait until a port is freed at time t5. Vehicle 4 arrives
at time t4, however, both of the ports are in use, moreover, vehicle 3 is already
allocated to the port becoming free at time t5, thus, it has to wait until time t6,
when loading is finished at the first port.135

The output, i.e., the solution for the problem is the route plans of the
vehicles, which are the sequences of visited factories along with the list of
unloaded and loaded order items. That is, the route plan of vehicle vk is
Πk = ((fk1 , D

k
1 , P

k
1), (fk2 , D

k
2 , P

k
2), . . . , (fk`k , D

k
`k
, P k

`k
)), where fki refers to the ith

visited factory by the vehicle, Dk
i and P k

i are the lists of order items delivered140

and picked up at this visit, if any, respectively. The total distance traveled by

4

t1 t2 t3 t4 t5 t6 t7 t8

vehicle 1

vehicle 2

vehicle 3

vehicle 4

port 1

port 2

port 2

port 1

Figure 1: Example for vehicles arriving at a factory with two docking ports. White
rectangles represent dock approaching, gray rectangles represent unloading and loading
order items, black rectangles represent waiting for ports to become free.

vehicle vk is dist(Πk) =
∑`k−1

i=1 dist(fki , f
k
i+1).

The objective of the problem is to minimize the weighted sum of the total
tardiness of serving the orders and the average traveling distance of the vehicles.
For an order oi ∈ O let Ci denote its completion time (that is, the arrival time of
the order to its destination) in a solution, and Ti = max(0, Ci−tdi) its tardiness.
Then, the objective is

minimize λ×
∑
oi∈O

Ti +
1

|V|
×
∑
vk∈V

dist(Πk), (1)

where λ is a large positive constant. The value of the objective function (1)
for a given schedule is called score. Note that the completion time of a splitted
order is the arrival time of its latest items. For example, if in the situation145

depicted in Figure 1 vehicles 1 and 3 deliver the items of an order split in two,
the completion time of that order is the arrival time of the latest vehicle carrying
some items of the order, that is, t3.

2.2. The dynamic problem

In the dynamic problem, the orders are not known a priori, but arrive online.150

Order oi arrives at the release time tpi . Consequently, the route plans of the
vehicles are built dynamically, that is, route plans are always determined for
the currently known undelivered order items, and once a new subset of orders
becomes known, replanning is needed.

When solving the dynamic problem, replannings occur at update time points,155

e.g., at every 10 minutes. Let tupdate be such a time point. Although initially
all vehicles are empty and parked at a factory, this may not be the case in an
intermediate state of the dynamic problem, that is, at the update time vehicles
may be on their routs to some factories, and may have order items already
loaded on them. Thus, a status regarding to the update time is given for each160

vehicle as follows. Each vehicle has a current factory associated with a leave
time or a destination factory associated with an arrival time, or both. Moreover,
the carrying order items, i.e., the list of items currently carried by the vehicle
in the order of loading is also given, if any.

5

The destination factory is the next factory which will be visited by the165

vehicle, if any, and the associated arrival time is the calculated time when the
vehicle will arrive at that factory. Note that a vehicle is either at a factory or
on the way to a factory at time tupdate. If a vehicle is not at a factory, then it
has no current factory, but it has a destination (the factory to which the vehicle
is on its way). If a vehicle is parking at a factory at time tupdate, then this170

factory is the current factory of the vehicle with leave time tupdate. If a vehicle
is at a factory at time tupdate such that loading/unloading is not finished yet
(that is, the vehicle has arrived at the factory, but waits for a docking port to
become free, approaches a port, or uses a port), then this factory is the vehicle’s
current factory, and the leave time corresponds to the calculated time when175

loading/unloading is finished. If a vehicle has both of a current factory and
a destination, then the arrival time associated with the destination equals to
the leave time associated with the current factory plus the travel time between
them, that is, the vehicle will start to the destination without any delays. If
a vehicle has a destination at time tupdate, then this cannot be changed in the180

course of replanning, and it must remain the fist factory visited in the updated
route of the vehicle.

For an example, return to the situation depicted in Figure 1, consider vehi-
cle 3, and assume that this vehicle visits factory fj after it leaves the depicted
factory fi. If t3 ≤ tupdate ≤ t7, then fi is the current factory of vehicle 3 with185

leave time t7, and fj is the destination with arrival time t7 + travel(fi, fj). If
t7 < tupdate < t7 + travel(fi, fj), then vehicle 3 has no current factory, but has
destination fj with arrival time t7 + travel(fi, fj).

The order items, and thus the orders also have statuses regarding the update
time, namely, each item is either finished, ongoing, or unallocated. An order item190

is finished if it is already delivered to its destination, and an order is finished
if all of its order items are finished. An order item is ongoing, if it is already
loaded on a vehicle, but not yet delivered to its delivery factory, in other words,
the ongoing order items are the carrying order items of the vehicles. Finally, an
order item is unallocated if it is not yet loaded on any vehicle.195

To sum up, the constraints of the problem are the followings:

� Destination constraint: the destination factory of a vehicle, if any, cannot
be changed.

� Capacity constraint: the total quantity loaded on a vehicle cannot exceed
its capacity.200

� LIFO constraint: unloading items has to follow a last-in-first-out order.

� Splitting constraint: unsplittable orders cannot be split.

2.3. Dynamic evaluation

The organizer of the competition provided the participants a benchmark
dataset from real business scenarios along with a simulator to support the dy-205

namic evaluation of the solution approaches. Now, we briefly describe the op-
eration of this simulator, and for details we refer to (Hao et al., 2022).

6

The simulator is initialized with the complete data of the problem, that is,
all the orders are known a priori. In the simulator, the planning horizon is split
into several time intervals with the same duration, e.g., ∆T = 10 minutes. At210

the beginning of the current time interval, say [t, t+ ∆T], the simulator passes
the environment information (these are, the status of the vehicles and the order
items regarding to update time t) to the developed algorithm, and invokes it.
Once the algorithm outputs the planned routes, the simulator simulates the
events (these are, vehicle movements, loading, unloading, etc.) in time interval215

[t, t+ ∆T] based on the resulted routes, updates the environment information,
and steps to the next time interval [t + ∆T, t + 2∆T], or terminates with the
score of the complete solution if all the orders are finished.

Note that the simulator terminates with error, if the invoked algorithm does
not output the planned routes until the end of the time interval (i.e., within ∆T220

minutes), or the routes violate any of the constraints.

3. Modeling approach

In this section we describe our modeling approach. The main idea is to
maintain a schedule for the vehicles which is evaluated with an event-based
simulation procedure.225

3.1. Definitions and notation

Consider the current update time tupdate, and suppose O′ is the subset of
orders known at this time point, that is, O′ = {oi ∈ O : tpi ≤ tupdate}. First, we
group order items into packages subject to the following. The order items of a
package belong to the same order, have the same status (ongoing or unallocated),230

if the items are ongoing then carried by the same vehicle, the total size of the
items does not exceed the uniform capacity limit of the vehicles, and the order
items of an unsplittable order are in the same package. We just split a splittable
order into multiple packages and put an unsplittable order in one package. For
this, consider the order items Ii of an order oi ∈ O′, and let Ifi , Ioi , and235

Iui be its partition into finished, ongoing, and unallocated items, respectively.

Finished order items Ifi are not relevant anymore. Recall, that ongoing items
are currently carried by vehicles, thus let Ioi,k be the set of ongoing items of Ioi
carried by the vehicle vk. If such a set Ioi,k is non-empty, then we associate
a package with these items. Finally, consider the unallocated items. If Iui is240

non-empty, we first sort these items in non-increasing order of their size, then
we put them into packages in this order respecting the capacity limit. That is, if
an item does not fit into the currently used package, then we close this package,
open a new one, put the item into the freshly opened package, and continue the
process with the remaining items, if any. After the packages are determined, we245

do not modify them, that is, we do not move items between packages. Moreover,
in our solution approach we require that packages not be split, that is, the order
items of a package are loaded at once on a single vehicle, and are unloaded at
once. Note that by this, we never violate the splitting constraint. Also note that

7

(P1, P2) −P2 +P3 +P4 +P5 −P5 +P6 −P6 −P4 −P3 −P1

F1 F1 F1 F1 F2 F2 F1 F3 F3 F4

Figure 2: Example for a route. Pickup/delivery nodes are depicted with black/white circles.
Head/tail is depicted with black/white rectangle.

· · · · · · · · · · · · · · ·
+Pi +Pj −Pi −Pj

Figure 3: Example for a route violating LIFO constraint.

this packaging procedure may be too naive in general, however, it is appropriate250

for the provided instances (see Section 5.1).

3.2. Schedule

The schedule consists of the routes of the vehicles, where a route is a sequence
of nodes such that each node refers to a pickup or a delivery of a certain package.
Technically, a route is a doubly linked list with head and tail. A pickup node255

refers to the pickup of a certain package, and associated with that package and
with the pickup factory of the package. A delivery node refers to the delivery
of a certain package, and associated with that package and with the delivery
factory of the package.

In Figure 2 we depict an example route, where black circles are pickup260

nodes, white circles are delivery nodes, and the black and white rectangles refer
to the head and tail, respectively. Corresponding packages are indicated above
the nodes (carrying packages are indicated above the head), and corresponding
factories are indicated below the nodes. Note that carrying packages could be
also depicted at the start of the route as a sequence of pickup nodes of the265

corresponding packages in the order of loading.
A route is feasible if the pickup node (which is the head in case of carrying

packages) precedes the corresponding delivery node for each package, and also
fulfills the LIFO, the capacity, and the destination constraints. A route satisfies
the LIFO constraint if there are no two packages such that the order of pickup270

nodes and the order of delivery nodes are the same (see Figure 3 for an example).
A route fulfills the capacity constraint if for each starting slice of the route, the
total size of carrying packages, plus the total size of picked up packages, minus
the total size of delivered packages does not exceed the capacity limit. A route
satisfies the destination constraint if the first (not head) node belongs to the275

corresponding vehicle’s destination factory, if any. A schedule is feasible if all
of its routes are feasible.

8

+P3 +P4 +P5 −P5 +P6 −P6 −P4 −P3

Figure 4: Example for blocks. Blocks are framed by rectangles.

+P3 +P4 +P5 −P5 −P4 −P3

F1 F1 F1 F2 F3 F3

Figure 5: Example for a (maximal) bridge. Left and right sequences of the bridge are framed
by rectangles.

A couple is an ordered pair of a pickup node and a delivery node correspond-
ing to the same package.

A block is a sequence of consecutive nodes such that the first and the last280

nodes of the block refer to the pickup and the delivery of the same package,
respectively, see Figure 4. Note that a block is a slice of vehicle activity where
exactly those packages are delivered which are picked up in this block, that is,
the loaded packages are the same before and after the block. Thus if a block is
removed from a feasible route, the route still meets the capacity and the LIFO285

constraints.
A sequence (`1, . . . , `k) of consecutive pickup nodes and a sequence (rk, . . . , r1)

of consecutive delivery nodes constitute a bridge, if `j and rj are the pickup and
the delivery node of the same package, respectively, for j = 1, . . . , k, and more-
over, the pickup nodes belongs to the same factory, and the delivery nodes be-290

longs to the same factory, see Figure 5. Note that a bridge refers to a set of pack-
ages that are picked up at the same time and delivered at the same time. Thus,
if a bridge is removed from a feasible route, the route still meets the capacity and
the LIFO constraints. A bridge ((`1, . . . , `k), (rk, . . . , r1)) is maximal, if neither
((pred(`1), `1, . . . , `k), (rk, . . . , r1, succ(r1))) nor ((`1, . . . , `k, succ(`k)), (pred(rk), rk, . . . , r1))295

constitutes a bridge, where pred(n) and succ(n) denote the immediate predeces-
sor and the immediate successor of node n in the route, respectively. Remark
that a couple can be considered as a minimal bridge.

3.2.1. Evaluating schedule

In order to apply a local-based procedure we need to assign a value to each300

schedule, which is the corresponding objective value (see (1)), called evaluated
value. The evaluated value of a feasible schedule S is denoted by eval(S).

Because of the possible queuing at factories, the routes can have a big impact
on each other, so they cannot be independently evaluated. Thus to evaluate a
schedule we apply a simple discrete-event simulation procedure, similar to the305

9

evaluation procedure of the provided simulator.

3.2.2. Basic operations on a schedule

In our solution approach we apply several operations to modify a schedule.
The basic operations are to optimally insert a couple, a bridge, or a block into a
schedule. The optimal insertion of such a structure means that we consider those310

feasible schedules that can be resulted from the current one by the insertion of
the given structure, and we choose the one which yields the smallest evaluated
value.

The simplest operation is the optimal insertion of a block. Briefly stated,
for each route and for each position we try to insert the block, check whether315

the resulting schedule is feasible, and if so, we evaluate it, and finally, we choose
the one with the smallest evaluated value.

In case of the optimal insertion of a couple, for each route and for each
position we try to insert the pickup node, then for each subsequent position the
delivery node, then check whether the resulting schedule is feasible, and if so,320

we evaluate it, and finally, we choose the one with the smallest evaluated value.
The optimal insertion of a bridge into a schedule is analogous to the previous
procedure (recall, that a couple can be considered as a minimal bridge).

4. Solution approach

In this section we present our solution approach to solve an iteration of the325

dynamic pickup and delivery problem described in Section 2.2. This approach
consists of two main phases. First, we reconstruct the schedule obtained in the
previous iteration, if any, and insert newly arrived packages into this schedule
(see Section 4.1). Second, we improve this initial schedule by a local-search
procedure (see Section 4.2). The sketch of the whole approach is depicted in330

Figure 6.

4.1. Initial schedule

Note that improving a schedule may consume a lot of time, and this final
schedule could be a good starting point for the next iteration. Thus, in the end
of each iteration we save final schedule into a file, and in the beginning of each335

iteration we try to build an initial schedule based on the one obtained in the
previous iteration. This is nothing, but we reconstruct the previous schedule
from the file and remove expired nodes from the beginning of the routes, i.e.,
pickup nodes corresponding to packages already loaded on vehicles, and delivery
nodes corresponding to packages already unloaded from the vehicles.340

New packages (that is, packages corresponding to orders that have become
known since the last iteration, and thus not in this reconstructed schedule) are
inserted into the schedule as follows. The main idea is to insert packages (more
precisely, the corresponding couples) into the schedule one by one, starting with

10

Read input

Reconstruct schedule

Allocate new packages

Improve schedule

Write output

(a) Main steps of the approach.

Start iteration

Block exchange

Improved?

Bridge relocation

Improved?

Block relocation

Improved?

Improved in iteration?

Terminate

yes

no

yes

no

yes

no
yes

no

(b) Main steps of improving a schedule.

Figure 6: Sketch of the local-search based solution approach.

11

the most urgent in some sense. That is, for a package P that belongs to order oi
we determine an estimated delay value calculated as

∆P := tdi − tupdate −
(
tdocking + tloadingP + travel(fpi , f

d
i)
)

where tloadingP is the loading time of package P . There is no chance to deliver
the package on time, if the assigned vehicle does not arrive at the pickup factory
∆P time units later. Clearly, if ∆P is negative, the package will surely be late.
We call a package urgent if its estimated delay value is less then 3600 (seconds),
otherwise it is easy. We start insertion with urgent packages, then continue with345

the remaining ones. When we insert such a couple into the schedule, we apply
the optimal insertion procedure described in Section 3.2.2.

4.2. Improving a schedule

In order to improve a schedule we apply a local-search procedure (see Sec-
tion 4.2.2), where we use three different types of operations to modify the sched-350

ule (see Section 4.2.1).

4.2.1. Operations on schedules

A block relocation is an operation when a block is removed from its current
position and inserted back to an other place. After a block is removed from its
current place, it can be inserted into either the same route or into an other one.355

In Figure 7a we depict an example for a block relocation between routes.
Similarly, a bridge relocation is an operation when a maximal bridge is re-

moved from its current position and inserted back to an other place. Again,
after a bridge is removed from its current place, it can be inserted into either
the same route or into an other one. Note, however, that for inserting a bridge360

into a route there are many more options, since in this case two node sequences
have to be inserted. In Figure 7b we depict an example for a bridge relocation
between routes where there are nodes between the bridge’s two parts in the
initial schedule, but there are no nodes between these parts after relocation.

Finally, a block exchange is an operation when two blocks are exchanged with365

each other. In Figure 7c we depict an example for a block exchange between
routes.

4.2.2. Local-search approach

For a given operation type (i.e., a block relocation, a bridge relocation, or
a block exchange) we go through all the feasible schedules that can be resulted370

from the current incumbent schedule S by such an operation, and choose from
these a one, say S′, with minimal evaluated value. If eval(S′) < eval(S) then we
continue with improved schedule S′, otherwise, we say that schedule S cannot
be improved by such an operation.

The local-search procedure consists of iterations, where in each iteration we375

apply the block exchange operation until it improves the current incumbent
schedule, then we do the same with bridge relocation and then with block relo-
cation operations. If the schedule is improved at least once during an iteration,

12

· · ·
· · ·

· · ·× ×

· · · · · ·×
(a) Block relocation between routes.

· · ·
· · ·

· · ·
· · ·

· · ·× × × ×

· · · · · ·×
(b) Bridge relocation between routes. The two parts of the bridge will be adjacent after relocation.

· · · · · · · · ·× ×

· · · · · · · · ·× ×
(c) Block exchange between routes.

Figure 7: Example for schedule operations. Crossed/dashed arrows refer to old/new links.

we start a new iteration, otherwise, we terminate the local-search procedure.
The sketch of the procedure is depicted in Figure 6b. We also apply a 540 sec-380

onds time limit for the local-search procedure in order to meet the requirements
of the simulator (see Section 2.3), that is, before each improvement attempt we
check whether the time limit is reached, and if yes, we terminate the procedure.

Note that the presented order of the operations is not determined a priori,
but based on our computational experiments (see Section 5.2).385

4.3. Final remarks

As we mentioned in Section 1, Zhu et al. (2021) and Horváth et al. (2021)
also propose a local-search type solution approach for the DPDP. Since the cur-
rent approach is a revised and improved version that of Horváth et al. (2021),
the two algorithms show many similarities. First, to split orders and to create390

initial schedule, Horváth et al. (2021) apply the same procedure as described
in this paper, however, the authors use a different, compact – and in a sense
inconvenient – schedule representation where each node is associated with a
factory and two lists of packages to be delivered and picked up at this factory,
respectively. To improve schedules, the authors apply a local-search procedure395

with a time limit of one minute, using an operation equivalent to bridge relo-
cation (see Section 4.2.1). Since this time limit is rarely reached in practice
(i.e., on the benchmark instances), the authors felt no need to apply a schedule
reconstruction procedure, but build initial schedules always from scratch.

To split orders, Zhu et al. (2021) use a similar approach described in Sec-400

tion 3.1, apply a similar schedule structure presented in Section 3.2, and create

13

initial schedules similarly as in Section 4.1, and the authors also apply a sched-
ule reconstruction step. The authors apply a variable neighborhood search with
a time limit of 9 minutes to improve their schedule. They used four types of
operations to explore the ever-growing neighborhood of the current incumbent405

solution. These are, couple exchange, couple relocation, block exchange, block
relocation. As their names suggest, in case of couple relocation, a couple is
removed from its current position and inserted somewhere else, while in case
of couple exchange, two couples are exchanged between two different routes.
Block exchange and block relocation are similar as described in Section 4.2.1.410

If a schedule cannot be improved by these operations, the authors apply a 2-
opt like operator to disturb the schedule in order to avoid falling into a local
optimum.

5. Computational experiments

In this section we present our computational experiments. First, in Sec-415

tion 5.1 we briefly describe the public instances used in our computational exper-
iments, for the the detailed description we refer the reader to (Hao et al., 2022).
In Section 5.2 we evaluate the performance of the operations introduced in Sec-
tion 4.2.1 in order to find their best combination. Finally, in Section 5.3 we com-
pare our best method to the solution approaches submitted to the competition.420

The public dataset and the simulator can be download from the website https:

//competition.huaweicloud.com/information/1000041601/Download.
All experiments were performed on a workstation with an i9-7960X 2.80 GHz

CPU with 16 cores, under Debian 9 operating system using a single thread.

5.1. Instances425

Participants were provided with a public dataset for testing purpose, while
submitted algorithms were evaluated on a hidden dataset. The public dataset
consists of 64 instances based on 30 days of historical data. These instances
contain 50-4000 orders of a single day to be satisfied with 5-100 vehicles, see
Table 1. As it turned out afterwards, hidden dataset consists of 3 instances430

from the biggest groups of public dataset, these are, instances 50, 54, and 61.
In case of all instances, there are 4 hours to complete an order on time,

that is, for each order oi ∈ O we have tdi − t
p
i = 14 400 seconds. Each order

item is either a box, a small pallet, or a standard pallet, and has a size of 0.25,
0.5, and 1 unit, respectively, while the uniform capacity limit of the vehicles is435

15 units. Loading or unloading a box, a small pallet, and a standard pallet takes
15, 30, and 60 seconds, respectively. The underlying network is the same for
all instances and consists of 153 factories, such that each factory has 6 docking
ports. Docking to a port takes half an hour (i.e., tdocking = 1800 seconds).
Finally, the constant, λ, in the objective function (1) equals to 10 000/3600,440

that is, a cost of ≈ 2.78 units must be paid for every second of delay.

14

https://competition.huaweicloud.com/information/1000041601/Download
https://competition.huaweicloud.com/information/1000041601/Download
https://competition.huaweicloud.com/information/1000041601/Download

Table 1: Basic properties of public instances

Group Instances Orders Vehicles

1 1 – 8 50 5
2 9 – 16 100 10
3 17 – 24 300 20
4 25 – 32 500 20
5 33 – 40 1000 50
6 41 – 48 2000 50
7 49 – 56 3000 100
8 57 – 64 4000 100

Table 2: Scenarios for the evaluation of the local-search based algorithm

Scenario Block relocation Bridge relocation Block exchange

Scenario 1 (◦ ◦ ◦) no no no
Scenario 2 (• ◦ ◦) yes no no
Scenario 3 (◦ • ◦) no yes no
Scenario 4 (◦ ◦ •) no no yes
Scenario 5 (• • ◦) yes yes no
Scenario 6 (• ◦ •) yes no yes
Scenario 7 (◦ • •) no yes yes
Scenario 8 (• • •) yes yes yes

5.2. Evaluation of the local-search based approach

In Section 4.2.1 three operations are introduced to improve schedules. We
performed computational experiments to investigate the effect of these opera-
tions and to find their best combination. That is, we examined the eight scenar-445

ios summarized in Table 2, where for each scenario we marked whether block
relocation, bridge relocation, or block exchange was applied. Note that symbols
are only indicated to provide visual assistance in identifying the corresponding
scenario (that is, ’•’ refers to the presence of the corresponding operation, and
’◦’ indicates if it is not applied).450

In Tables 3 and 4 we summarize the results, that is, the average scores for
each group and for the complete dataset, while the scores per instance can be
found in the Supplementary Material associated with this paper. For each group
and for the complete dataset the best results are highlighted.

The average score for the complete dataset is 3 070 172.1 when no local-455

search is applied (Scenario 1). As expected, using any of the three operations
(Scenarios 2-4) gives a significantly better result, while the best improvement
(40.9%) is resulted when block exchange operation is applied (Scenario 4). Based
on these observations, we applied these operations in the order described in
Section 4.2.2, that is, in each iteration we started to improve the schedule by460

block exchanges, then by bridge relocations, and finally by block relocations.
These results depicted in Table 4. We get the best average score for the complete

15

Table 3: Average scores of the local-search approach (Scenarios 1-4)

Instances Scenario 1 Scenario 2 Scenario 3 Scenario 4
◦ ◦ ◦ • ◦ ◦ ◦ • ◦ ◦ ◦ •

Group 1 1 231.3 1 226.9 1 225.5 1 227.4
Group 2 51 591.1 39 576.2 34 038.5 34 681.3
Group 3 1 205.0 725.0 691.8 725.5
Group 4 14 735.4 9 542.2 10 766.9 6 847.5
Group 5 12 544.7 12 086.8 11 984.1 11 600.9
Group 6 1 028 109.1 207 503.5 118 418.4 232 882.5
Group 7 3 394 542.1 1 650 329.9 1 456 570.2 1 831 027.1
Group 8 20 057 417.7 14 715 948.6 13 517 726.3 12 398 856.7

All 3 070 172.1 2 079 617.4 1 893 927.7 1 814 731.1

Table 4: Average scores of the local-search approach (Scenarios 5-8)

Instances Scenario 5 Scenario 6 Scenario 7 Scenario 8
• • ◦ • ◦ • ◦ • • • • •

Group 1 1 226.6 1 306.6 1 226.8 1 306.7
Group 2 30 829.7 31 191.4 38 344.1 34 046.3
Group 3 809.8 690.4 927.5 687.8
Group 4 8 733.5 4 820.8 7 303.1 6 831.4
Group 5 11 343.9 10 645.7 11 049.2 10 344.8
Group 6 110 274.7 70 594.5 47 553.4 42 249.8
Group 7 1 610 791.6 1 374 656.6 1 025 329.8 1 103 798.1
Group 8 13 472 511.8 11 120 565.8 9 314 094.5 8 913 545.2

All 1 905 815.2 1 576 809.0 1 305 728.6 1 264 101.3

16

Table 5: Average scores of the solution approaches

Instances LSBA* 1st Team1 2nd Team2 3rd Team3

Group 1 1 306.7 2 896.4 13 676.2 1 763.8
Group 2 34 046.3 41 535.3 - 62 180.2
Group 3 687.8 5 860.4 2 310.7 8 969.7
Group 4 6 831.4 6 544.5 105 049.4 26 938.3
Group 5 10 344.8 10 459.1 17 284.3 94 794.9
Group 6 42 249.8 41 494.3 153 419.1 651 944.9
Group 7 1 103 798.1 798 240.7 904 586.3 1 941 385.3
Group 8 8 913 545.2 11 359 466.4 18 678 529.1 15 122 816.2

All 1 264 101.3 1 533 312.1 - 2 238 849.2

* Local-search based approach proposed in this paper
1 Zhu et al. (2021)
2 Ye and Liang (2021)
3 Horváth et al. (2021)

dataset, namely 1 264 101.3, if all of the operations are in use (Scenario 8).

5.3. Comparison of the solution approaches

Finally, we compare our best solution approach determined in the previous465

experiments (that is, Scenario 8) to the three approaches submitted to the
competition, namely, the variable neighborhood search method of Zhu et al.
(2021), the rule-based algorithm of Ye and Liang (2021), and the local-search
based approach of Horváth et al. (2021). In Table 5 we indicate the average
scores for each group and for the complete dataset, while the scores per instance470

can be found in the Supplementary Material associated with this paper. For
each group and for the complete dataset the best results are highlighted.

Note that the algorithms of Ye and Liang (2021) and Horváth et al. (2021)
never reach the set time limit, thus give the same scores for each execution.
This is why we got the same average scores on the hidden dataset (i.e., on475

instances 50, 54, and 61) as resulted by the evaluation on Huawei’s servers
(namely, 3 765 994.1 and 3 905 011.1). In contrast, the algorithm of Zhu et al.
(2021) often reaches the 9 minutes time limit set by the authors, thus in a
faster computer their variable neighborhood search method may perform more
iterations, thus outputs a better schedule, and thus finally gives a better score.480

That is why we cannot reproduce the hidden score of this algorithm on our
server (namely, we get 2 541 925.6 instead of 2 291 704). However, we emphasize
that since all of our experiments were performed on the same workstation, our
comparisons are fair.

Note that the submitted algorithm of Ye and Liang (2021) fails on seven485

instances of Group 2, thus in this case no average score is depicted for the
group and for the complete dataset, however, even in the best case scenario
(that is, assuming a zero score for all of these instance) the latter would be
2 487 183.2. The solution approach of the first place team – apart from the

17

smallest groups — significantly outperforms the approaches of the other two490

awarded teams. That is, this approach gives the lowest score on 49 out of 64
instances, and the average score for the five biggest group is much better than
the other two cases.

On the complete dataset the local-search based approach presented in this
paper (indicated as LSBA) gives the best result, i.e., the lowest average score,495

namely, 1 264 101.3, which is 17.6% better than the score of the first place team.
Also this approach gives the lowest average score for 5 out of 8 groups including
the biggest one, where it gives the best result on 6 out of 8 instances.

For the sake of completeness, we note that on hidden dataset (i.e., on in-
stances 50, 54, and 61) the local-search based approach gives average score500

equals to 3 564 390.4 and in the best case (that is, Scenario 7) it equals to
3 124 566.8 which is also higher then that of (Zhu et al., 2021).

6. Conclusions

In this paper we proposed a local-search based solution approach for the Dy-
namic Pickup and Delivery Problem introduced by the Huawei Technologies Co.505

Ltd. The problem has some unique real-world characteristics, such as limited
number of ports at the facilities for serving the vehicles. Our computational
experiments proved that the proposed algorithm outperforms the other known
approaches.

In the future we plan to further develop our method to better exploit some510

hidden characteristics of the problem, in which machine learning techniques may
have a great potential.

7. Acknowledgments

This work was supported by the National Research, Development and Inno-
vation Office, grant numbers SNN 129178 and TKP2021-NKTA-01. The authors515

are thankful to Xiang Xiang for all the technical help he assisted us during the
competition.

References

Attanasio, A., Bregman, J., Ghiani, G., Manni, E., 2007. Real-time fleet man-
agement at Ecourier Ltd, in: Dynamic fleet management. Springer, pp. 219–520

238.

Bektaş, T., Repoussis, P.P., Tarantilis, C.D., 2014. Chapter 11: dynamic vehicle
routing problems, in: Vehicle Routing: Problems, Methods, and Applications,
Second Edition. SIAM, pp. 299–347.

Berbeglia, G., Cordeau, J.F., Laporte, G., 2010. Dynamic pickup and delivery525

problems. European Journal of Operational Research 202, 8–15.

18

Braekers, K., Ramaekers, K., Van Nieuwenhuyse, I., 2016. The vehicle routing
problem: State of the art classification and review. Computers & Industrial
Engineering 99, 300–313.

Branchini, R.M., Armentano, V.A., Løkketangen, A., 2009. Adaptive granular530

local search heuristic for a dynamic vehicle routing problem. Computers &
Operations Research 36, 2955–2968.

Clarke, G., Wright, J.W., 1964. Scheduling of vehicles from a central depot to
a number of delivery points. Operations research 12, 568–581.

Cordeau, J.F., Laporte, G., 2003. The dial-a-ride problem (DARP): Variants,535

modeling issues and algorithms. Quarterly Journal of the Belgian, French and
Italian Operations Research Societies 1, 89–101.

Dantzig, G.B., Ramser, J.H., 1959. The truck dispatching problem. Manage-
ment science 6, 80–91.

Demirtaş, Y.E., Özdemir, E., Demirtaş, U., 2015. A particle swarm optimization540

for the dynamic vehicle routing problem, in: 2015 6th International Confer-
ence on Modeling, Simulation, and Applied Optimization (ICMSAO), IEEE.
pp. 1–5.

Eksioglu, B., Vural, A.V., Reisman, A., 2009. The vehicle routing problem: A
taxonomic review. Computers & Industrial Engineering 57, 1472–1483.545

Elhassania, M., Jaouad, B., Ahmed, E.A., 2014. Solving the dynamic vehicle
routing problem using genetic algorithms, in: 2014 International Conference
on Logistics Operations Management, IEEE. pp. 62–69.

Györgyi, P., Kis, T., 2019. A probabilistic approach to pickup and delivery
problems with time window uncertainty. European Journal of Operational550

Research 274, 909–923.

Hao, J., Lu, J., Li, X., Tong, X., Xiang, X., Yuan, M., Zhuo, H.H., 2022. In-
troduction to the dynamic pickup and delivery problem benchmark – ICAPS
2021 competition. arXiv:2202.01256.

Ho, S.C., Szeto, W.Y., Kuo, Y.H., Leung, J.M., Petering, M., Tou, T.W., 2018.555

A survey of dial-a-ride problems: Literature review and recent developments.
Transportation Research Part B: Methodological 111, 395–421.

Horváth, M., Kis, T., Györgyi, P., 2021. Solution approach of the Quickest
Route Team for solving the ”ICAPS 2021: The Dynamic Pickup and Delivery
Problem” challenge by Huawei. https://competition.huaweicloud.com/560

information/1000041411/Winning.

Li, X., Luo, W., Yuan, M., Wang, J., Lu, J., Wang, J., Lü, J., Zeng, J., 2021.
Learning to optimize industry-scale dynamic pickup and delivery problems,
in: 2021 IEEE 37th International Conference on Data Engineering (ICDE),
IEEE. pp. 2511–2522.565

19

http://arxiv.org/abs/2202.01256
https://competition.huaweicloud.com/information/1000041411/Winning
https://competition.huaweicloud.com/information/1000041411/Winning
https://competition.huaweicloud.com/information/1000041411/Winning

Ma, Y., Hao, X., Hao, J., Lu, J., Liu, X., Xialiang, T., Yuan, M., Li, Z., Tang,
J., Meng, Z., 2021. A hierarchical reinforcement learning based optimization
framework for large-scale dynamic pickup and delivery problems. Advances
in Neural Information Processing Systems 34.

Montemanni, R., Gambardella, L.M., Rizzoli, A.E., Donati, A.V., 2005. Ant570

colony system for a dynamic vehicle routing problem. Journal of combinatorial
optimization 10, 327–343.

Nasri, S., Bouziri, H., Aggoune-Mtalaa, W., 2021. Customer-oriented dial-a-
ride problems: A survey on relevant variants, solution approaches and appli-
cations, in: Emerging Trends in ICT for Sustainable Development. Springer,575

pp. 111–119.

Pillac, V., Gendreau, M., Guéret, C., Medaglia, A.L., 2013. A review of dynamic
vehicle routing problems. European Journal of Operational Research 225, 1–
11.

Psaraftis, H.N., Wen, M., Kontovas, C.A., 2016. Dynamic vehicle routing prob-580

lems: Three decades and counting. Networks 67, 3–31.

Reyes, D., Erera, A., Savelsbergh, M., Sahasrabudhe, S., O’Neil, R., 2018. The
meal delivery routing problem. Optimization Online 6571.

Rios, B.H.O., Xavier, E.C., Miyazawa, F.K., Amorim, P., Curcio, E., Santos,
M.J., 2021. Recent dynamic vehicle routing problems: A survey. Computers585

& Industrial Engineering 160, 107604.

Toth, P., Vigo, D., 2002. The vehicle routing problem. SIAM.

Ulmer, M.W., Thomas, B.W., Campbell, A.M., Woyak, N., 2021. The restau-
rant meal delivery problem: Dynamic pickup and delivery with deadlines and
random ready times. Transportation Science 55, 75–100.590

Xu, Y., Wang, L., Yang, Y., 2013. Dynamic vehicle routing using an improved
variable neighborhood search algorithm. Journal of Applied Mathematics
2013.

Yang, J., Jaillet, P., Mahmassani, H., 2004. Real-time multivehicle truckload
pickup and delivery problems. Transportation Science 38, 135–148.595

Ye, J., Liang, E., 2021. ICAPS2021: DPDP Challenge. https://competition.
huaweicloud.com/information/1000041411/Winning.

Zhang, H., Ge, H., Yang, J., Tong, Y., 2022. Review of vehicle routing problems:
Models, classification and solving algorithms. Archives of Computational
Methods in Engineering 29, 195–221.600

Zhu, Q., Cai, J., Lin, Q., 2021. A variable neighborhood search method for Dy-
namic Pickup and Delivery Problem. https://competition.huaweicloud.

com/information/1000041411/Winning.

20

https://competition.huaweicloud.com/information/1000041411/Winning
https://competition.huaweicloud.com/information/1000041411/Winning
https://competition.huaweicloud.com/information/1000041411/Winning
https://competition.huaweicloud.com/information/1000041411/Winning
https://competition.huaweicloud.com/information/1000041411/Winning
https://competition.huaweicloud.com/information/1000041411/Winning

	Introduction
	Problem definition
	The static problem
	The dynamic problem
	Dynamic evaluation

	Modeling approach
	Definitions and notation
	Schedule
	Evaluating schedule
	Basic operations on a schedule

	Solution approach
	Initial schedule
	Improving a schedule
	Operations on schedules
	Local-search approach

	Final remarks

	Computational experiments
	Instances
	Evaluation of the local-search based approach
	Comparison of the solution approaches

	Conclusions
	Acknowledgments

